Toward fast belief propagation for distributed constraint optimization problems via heuristic search

Belief propagation (BP) approaches, such as Max-sum and its variants, are important methods to solve large-scale Distributed Constraint Optimization Problems. However, these algorithms face a huge challenge since their computational complexity scales exponentially with the arity of each constraint f...

Full description

Saved in:
Bibliographic Details
Published inAutonomous agents and multi-agent systems Vol. 38; no. 1; p. 15
Main Authors Gao, Junsong, Chen, Ziyu, Chen, Dingding, Zhang, Wenxin, Li, Qiang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1387-2532
1573-7454
DOI10.1007/s10458-024-09643-y

Cover

More Information
Summary:Belief propagation (BP) approaches, such as Max-sum and its variants, are important methods to solve large-scale Distributed Constraint Optimization Problems. However, these algorithms face a huge challenge since their computational complexity scales exponentially with the arity of each constraint function. Current accelerating techniques for BP use sorting or branch-and-bound (BnB) strategy to reduce the search space. However, the existing BnB-based methods are mainly designed for specific problems, which limits their applicability. On the other hand, though several generic sorting-based methods have been proposed, they require significantly high preprocessing as well as memory overhead, which prohibits their adoption in some realistic scenarios. In this paper, we aim to propose a series of generic and memory-efficient heuristic search techniques to accelerate belief propagation. Specifically, by leveraging dynamic programming, we efficiently build function estimations for every partial assignment scoped in a constraint function in the preprocessing phase. Then, by using these estimations to build upper bounds and employing a branch-and-bound in a depth-first fashion to reduce the search space, we propose our first method called FDSP. Next, we enhance FDSP by adapting a concurrent-search strategy and leveraging the upper bounds as guiding information and propose its first heuristic variant framework called CONC-FDSP. Finally, by choosing to expand the partial assignment with the highest upper bound in each step of exploration, we propose the second heuristic variant of FDSP, called BFS-FDSP. We prove the correctness of our methods theoretically, and our empirical evaluations indicate their superiority for accelerating Max-sum in terms of both time and memory, compared with the state-of-the-art.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1387-2532
1573-7454
DOI:10.1007/s10458-024-09643-y