Generic five-equation model for compressible multi-material flows and its corresponding high-fidelity numerical algorithms
The five-equation model is widely used to simulate compressible multi-material flows. However, disunity and anomalous phenomena exist in both the model and corresponding numerical simulations. In this study, we first derived a unified formulation for the five-equation model, establishing a generic f...
Saved in:
| Published in | Journal of computational physics Vol. 487; p. 112154 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
15.08.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9991 1090-2716 |
| DOI | 10.1016/j.jcp.2023.112154 |
Cover
| Summary: | The five-equation model is widely used to simulate compressible multi-material flows. However, disunity and anomalous phenomena exist in both the model and corresponding numerical simulations. In this study, we first derived a unified formulation for the five-equation model, establishing a generic five-equation model. This model can not only recover existing typical five-equation models and generate new models but also provide a flexible framework for numerically simulating compressible multi-material flow problems in a consistent manner. Based on these properties, we constructed a suite of high-fidelity numerical algorithms, including a consistent algorithm for equations of volume fractions, technique for avoiding potential Mach number oscillation, and technique for restoring the non-monotonic sound speed if it is indeed physically possible. The proposed model and its corresponding high-fidelity numerical algorithms are verified on one-, two-, and three-dimensional problems, including artificial mixtures for separating pure or nearly pure fluids and physical fluid mixtures, and materials modeled as an ideal gas, stiffened gas, and Mie-Grüneisen-type equation of state. The numerical results validate our conclusions and confirm the broad applicability of the proposed model and its corresponding algorithm. |
|---|---|
| ISSN: | 0021-9991 1090-2716 |
| DOI: | 10.1016/j.jcp.2023.112154 |