A Novel Compressive Sensing Algorithm for SAR Imaging

A novel compressive sensing (CS) algorithm for synthetic aperture radar (SAR) imaging is proposed which is called as the two-dimensional double CS algorithm (2-D-DCSA). We first derive the imaging operator for SAR, which is named as the chirp-scaling operator (CSO), from the chirp-scaling algorithm...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 7; no. 2; pp. 708 - 720
Main Authors Dong, Xiao, Zhang, Yunhua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.02.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1939-1404
2151-1535
DOI10.1109/JSTARS.2013.2291578

Cover

More Information
Summary:A novel compressive sensing (CS) algorithm for synthetic aperture radar (SAR) imaging is proposed which is called as the two-dimensional double CS algorithm (2-D-DCSA). We first derive the imaging operator for SAR, which is named as the chirp-scaling operator (CSO), from the chirp-scaling algorithm (CSA), then we show its inverse is a linear map, which transforms the SAR image to the received baseband radar signal. We show that the SAR image can be reconstructed simultaneously in the range and azimuth directions from a small number of the raw data. The proposed algorithm can handle large-scale data because both the CSO and its inverse allow fast matrix-vector multiplications. Both the simulated and real data are processed to test the algorithm and the results show that the 2-D-DCSA can be applied to reconstructing the SAR images effectively with much less data than regularly required.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2013.2291578