A Novel Stochastic Framework Based on Cloud Theory and \theta -Modified Bat Algorithm to Solve the Distribution Feeder Reconfiguration

Distribution feeder reconfiguration (DFR) is a precious operation strategy that can improve the system from different aspects including total cost, reliability, and power quality. Nevertheless, the high complexity of the new smart grids has resulted in much uncertainty in the DFR problem that necess...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on smart grid Vol. 7; no. 2; pp. 740 - 750
Main Authors Kavousi-Fard, Abdollah, Niknam, Taher, Fotuhi-Firuzabad, Mahmud
Format Journal Article
LanguageEnglish
Published IEEE 01.03.2016
Subjects
Online AccessGet full text
ISSN1949-3053
1949-3061
DOI10.1109/TSG.2015.2434844

Cover

More Information
Summary:Distribution feeder reconfiguration (DFR) is a precious operation strategy that can improve the system from different aspects including total cost, reliability, and power quality. Nevertheless, the high complexity of the new smart grids has resulted in much uncertainty in the DFR problem that necessities the use of a sufficient stochastic framework to deal with them. In this way, this paper proposes a new stochastic framework based on cloud theory to account the uncertainties associated with multiobjective DFR problem from the reliability point of view. Cloud theory is constructed based on fuzzy theory and probability idea. In comparison with the Monte Carlo simulation method, cloud models can give more information on the uncertainties associated with the problem. This special aspect of cloud models makes it possible to integrate the fuzziness and randomness of qualitative concepts through the cloud drops and then transforms them to the quantitative model. In order to solve the proposed problem, a fast and powerful optimization technique is required. To deal with this issue, a new optimization algorithm designated as θ-bat algorithm is proposed in this paper. The feasibility and satisfying performance of the proposed method are examined on the 32-bus and 69-bus IEEE distribution test system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2015.2434844