Evolutionary feature weighting to improve the performance of multi-label lazy algorithms

In the last decade several modern applications where the examples belong to more than one label at a time have attracted the attention of research into machine learning. Several derivatives of the k-nearest neighbours classifier to deal with multi-label data have been proposed. A k-nearest neighbour...

Full description

Saved in:
Bibliographic Details
Published inIntegrated computer-aided engineering Vol. 21; no. 4; pp. 339 - 354
Main Authors Reyes, Oscar, Morell, Carlos, Ventura, Sebastián
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2014
Subjects
Online AccessGet full text
ISSN1069-2509
1875-8835
DOI10.3233/ICA-140468

Cover

Abstract In the last decade several modern applications where the examples belong to more than one label at a time have attracted the attention of research into machine learning. Several derivatives of the k-nearest neighbours classifier to deal with multi-label data have been proposed. A k-nearest neighbours classifier has a high dependency with respect to the definition of a distance function, which is used to retrieve the k-nearest neighbours in feature space. The distance function is sensitive to irrelevant, redundant, and interacting or noise features that have a negative impact on the precision of the lazy algorithms. The performance of lazy algorithms can be significantly improved with the use of an appropriate weight vector, where a feature weight represents the ability of the feature to distinguish pattern classes. In this paper a filter-based feature weighting method to improve the performance of multi-label lazy algorithms is proposed. To learn the weights, an optimisation process of a metric is carried out as heuristic to estimate the feature weights. The experimental results on 21 multi-label datasets and 5 multi-label lazy algorithms confirm the effectiveness of the feature weighting method proposed for a better multi-label lazy learning.
AbstractList In the last decade several modern applications where the examples belong to more than one label at a time have attracted the attention of research into machine learning. Several derivatives of the k-nearest neighbours classifier to deal with multi-label data have been proposed. A k-nearest neighbours classifier has a high dependency with respect to the definition of a distance function, which is used to retrieve the k-nearest neighbours in feature space. The distance function is sensitive to irrelevant, redundant, and interacting or noise features that have a negative impact on the precision of the lazy algorithms. The performance of lazy algorithms can be significantly improved with the use of an appropriate weight vector, where a feature weight represents the ability of the feature to distinguish pattern classes. In this paper a filter-based feature weighting method to improve the performance of multi-label lazy algorithms is proposed. To learn the weights, an optimisation process of a metric is carried out as heuristic to estimate the feature weights. The experimental results on 21 multi-label datasets and 5 multi-label lazy algorithms confirm the effectiveness of the feature weighting method proposed for a better multi-label lazy learning.
Author Ventura, Sebastián
Reyes, Oscar
Morell, Carlos
Author_xml – sequence: 1
  givenname: Oscar
  surname: Reyes
  fullname: Reyes, Oscar
  organization: , Holguín
– sequence: 2
  givenname: Carlos
  surname: Morell
  fullname: Morell, Carlos
  organization: , Holguín
– sequence: 3
  givenname: Sebastián
  surname: Ventura
  fullname: Ventura, Sebastián
  email: sventura@uco.es
  organization: , Holguín
BookMark eNptkEtLAzEUhYNUsK1u_AXZKcJonpOZpZT6gIIbBXdDZnqnTclMapKp1F9vSl1JV_de-M7lnDNBo971gNA1Jfeccf7wOnvMqCAiL87QmBZKZkXB5SjtJC8zJkl5gSYhbAghkjA1Rp_znbNDNK7Xfo9b0HHwgL_BrNbR9CscHTbd1rsd4LgGvAXfOt_pvgHsWtwNNprM6hostvpnj7VdOW_iuguX6LzVNsDV35yij6f5--wlW7w9J5eLrGFlHrOlYjVjSyGUACELoVhJFHBNa90sAUhbSyE5qZmGpuFApUiH5C0VvCiZZnyKbo9_k8mvAUKsOhMasFb34IZQ0VzRnClFioSSI9p4F4KHtmpM1Ifs0WtjK0qqQ4lVslcdS0ySu3-SrTddquo0fHOEg15BtXGD71PyU-QviauA6w
CitedBy_id crossref_primary_10_1111_mice_12176
crossref_primary_10_3390_computation11020032
crossref_primary_10_1109_TCYB_2019_2894985
crossref_primary_10_1142_S0218001415390012
crossref_primary_10_3233_ICA_180581
crossref_primary_10_1142_S012906571650012X
crossref_primary_10_1016_j_patcog_2020_107526
crossref_primary_10_1111_exsy_12185
crossref_primary_10_1016_j_artmed_2020_101950
crossref_primary_10_1007_s00158_016_1483_5
crossref_primary_10_1142_S0218213015300021
crossref_primary_10_1016_j_knosys_2018_08_018
crossref_primary_10_3233_ICA_160513
crossref_primary_10_3233_ICA_160536
crossref_primary_10_14359_51689360
crossref_primary_10_14359_51689485
crossref_primary_10_1142_S0129065716500210
crossref_primary_10_1007_s12559_017_9485_1
crossref_primary_10_1109_TCYB_2019_2932439
crossref_primary_10_1002_widm_1240
crossref_primary_10_1142_S0129065715500124
crossref_primary_10_1115_1_4049371
crossref_primary_10_7717_peerj_cs_261
crossref_primary_10_1007_s12559_015_9370_8
crossref_primary_10_1515_revneuro_2016_0029
crossref_primary_10_3390_sym13020322
ContentType Journal Article
Copyright 2014 ‒ IOS Press and the authors. All rights reserved
Copyright_xml – notice: 2014 ‒ IOS Press and the authors. All rights reserved
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.3233/ICA-140468
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1875-8835
EndPage 354
ExternalDocumentID 10_3233_ICA_140468
10.3233_ICA-140468
GroupedDBID .4S
.DC
0R~
29J
4.4
5GY
AAGLT
AAOTM
AAQXI
ABDBF
ABJNI
ABUBZ
ABUJY
ACGFS
ACIWK
ACPQW
ACUHS
ADMLS
ADZMO
AEJQA
AENEX
AFRHK
AFYTF
AHDMH
AJNRN
ALMA_UNASSIGNED_HOLDINGS
APPIZ
ARCSS
ASPBG
AVWKF
CAG
COF
DU5
EAD
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
FEDTE
HZ~
I-F
IL9
IOS
J8X
MET
MIO
MK~
ML~
MV1
NGNOM
O9-
P2P
PQQKQ
Q1R
RIG
SAUOL
SCNPE
SFC
TUS
AAPII
AAYXX
AJGYC
CITATION
H13
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-d72b22d4474e458472907e3a1bacdee0fb54530b2aecc3e15430b53f143892a23
ISSN 1069-2509
IngestDate Thu Oct 02 12:12:46 EDT 2025
Thu Apr 24 23:12:23 EDT 2025
Wed Oct 01 06:44:50 EDT 2025
Tue Jun 17 22:30:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords lazy learning algorithms
multi-label classification
learning metric
label ranking
evolutionary algorithms
Feature weighting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-d72b22d4474e458472907e3a1bacdee0fb54530b2aecc3e15430b53f143892a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671627708
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_1671627708
crossref_citationtrail_10_3233_ICA_140468
crossref_primary_10_3233_ICA_140468
sage_journals_10_3233_ICA_140468
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle Integrated computer-aided engineering
PublicationYear 2014
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
SSID ssj0005027
Score 2.1585524
Snippet In the last decade several modern applications where the examples belong to more than one label at a time have attracted the attention of research into machine...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 339
SubjectTerms Algorithms
Classifiers
Derivatives
Evolutionary
Mathematical analysis
Mathematical models
Performance enhancement
Weighting methods
Title Evolutionary feature weighting to improve the performance of multi-label lazy algorithms
URI https://journals.sagepub.com/doi/full/10.3233/ICA-140468
https://www.proquest.com/docview/1671627708
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1875-8835
  dateEnd: 20250202
  omitProxy: true
  ssIdentifier: ssj0005027
  issn: 1069-2509
  databaseCode: ABDBF
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1875-8835
  dateEnd: 20250202
  omitProxy: false
  ssIdentifier: ssj0005027
  issn: 1069-2509
  databaseCode: ADMLS
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4EHPgaI8SUjEBKqDI7tfD12o9VAYzzQor5ZTuLApqoZbTbE_nrOH2k81IfBS5RGrhP5Z5_vzne_Q-g1TKKYx1lC4iIVRGR1RHKuawKqPi2zWGW0MA79z8fJ4Ux8msfzrla5zy5pi3fl5da8kv9BFZ4BriZL9h-Q3XQKD-Ae8IUrIAzXa2E8vvDdm9C3WluOzuEv6-y0WVCNSYJcNRfaJUQFOQLmVN2EEhKYBHoxXKjL30O1-N6sTtofnr_8tI9xt3wSNv3NVoAghlayGuqeyrCD7Zvdwqw--lXDBtnxenu3QiQCt4KThDTJCehHeSgqWRRMCRHIPe4YifwWyh0v9N_SmTPjPZ58PBgRQ-rjyulcpcA-_iIns6MjOR3Pp2_OfhJTHcycovtSKTfRDgPpTQdoZ7T_YX_SB_NQW5x389GOiNa88H3_uquqR29PBCF8VquY3kN3vDmARw7b--iGXu6iu940wF7wrnfR7YA38gGah8BjDzzeAI_bBnvgMQCPA-BxU-MAeGyAxz3wD9FsMp4eHBJfIoOULE9aUqWsYKwSIhXanniznKaaq6hQZaU1rQvQkDmsNwVLlWvQl-FHzGtb9J4pxh-hwbJZ6scI52UCqnhVUFXUIuPwz6xWYH9pMHJhE8r30Ntu9GTp-eNNGZOFBDvSjLSE75JupPfQq03bM8easrXVyw4ECULNnFSppW7O1zJKDLFZmlJogw060q-69ZZunlyjm6foVj_Jn6FBuzrXz0GbbIsXfir9ARaheOk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+feature+weighting+to+improve+the+performance+of+multi-label+lazy+algorithms&rft.jtitle=Integrated+computer-aided+engineering&rft.au=Ventura%2C+Sebastin&rft.date=2014-01-01&rft.issn=1069-2509&rft.volume=21&rft.issue=4&rft.spage=339&rft.epage=354&rft_id=info:doi/10.3233%2FICA-140468&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-2509&client=summon