Evolutionary feature weighting to improve the performance of multi-label lazy algorithms
In the last decade several modern applications where the examples belong to more than one label at a time have attracted the attention of research into machine learning. Several derivatives of the k-nearest neighbours classifier to deal with multi-label data have been proposed. A k-nearest neighbour...
        Saved in:
      
    
          | Published in | Integrated computer-aided engineering Vol. 21; no. 4; pp. 339 - 354 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London, England
          SAGE Publications
    
        01.01.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1069-2509 1875-8835  | 
| DOI | 10.3233/ICA-140468 | 
Cover
| Abstract | In the last decade several modern applications where the examples belong to more than one label at a time have attracted the attention of research into machine learning. Several derivatives of the k-nearest neighbours classifier to deal with multi-label data have been proposed. A k-nearest neighbours classifier has a high dependency with respect to the definition of a distance function, which is used to retrieve the k-nearest neighbours in feature space. The distance function is sensitive to irrelevant, redundant, and interacting or noise features that have a negative impact on the precision of the lazy algorithms. The performance of lazy algorithms can be significantly improved with the use of an appropriate weight vector, where a feature weight represents the ability of the feature to distinguish pattern classes. In this paper a filter-based feature weighting method to improve the performance of multi-label lazy algorithms is proposed. To learn the weights, an optimisation process of a metric is carried out as heuristic to estimate the feature weights. The experimental results on 21 multi-label datasets and 5 multi-label lazy algorithms confirm the effectiveness of the feature weighting method proposed for a better multi-label lazy learning. | 
    
|---|---|
| AbstractList | In the last decade several modern applications where the examples belong to more than one label at a time have attracted the attention of research into machine learning. Several derivatives of the k-nearest neighbours classifier to deal with multi-label data have been proposed. A k-nearest neighbours classifier has a high dependency with respect to the definition of a distance function, which is used to retrieve the k-nearest neighbours in feature space. The distance function is sensitive to irrelevant, redundant, and interacting or noise features that have a negative impact on the precision of the lazy algorithms. The performance of lazy algorithms can be significantly improved with the use of an appropriate weight vector, where a feature weight represents the ability of the feature to distinguish pattern classes. In this paper a filter-based feature weighting method to improve the performance of multi-label lazy algorithms is proposed. To learn the weights, an optimisation process of a metric is carried out as heuristic to estimate the feature weights. The experimental results on 21 multi-label datasets and 5 multi-label lazy algorithms confirm the effectiveness of the feature weighting method proposed for a better multi-label lazy learning. | 
    
| Author | Ventura, Sebastián Reyes, Oscar Morell, Carlos  | 
    
| Author_xml | – sequence: 1 givenname: Oscar surname: Reyes fullname: Reyes, Oscar organization: , Holguín – sequence: 2 givenname: Carlos surname: Morell fullname: Morell, Carlos organization: , Holguín – sequence: 3 givenname: Sebastián surname: Ventura fullname: Ventura, Sebastián email: sventura@uco.es organization: , Holguín  | 
    
| BookMark | eNptkEtLAzEUhYNUsK1u_AXZKcJonpOZpZT6gIIbBXdDZnqnTclMapKp1F9vSl1JV_de-M7lnDNBo971gNA1Jfeccf7wOnvMqCAiL87QmBZKZkXB5SjtJC8zJkl5gSYhbAghkjA1Rp_znbNDNK7Xfo9b0HHwgL_BrNbR9CscHTbd1rsd4LgGvAXfOt_pvgHsWtwNNprM6hostvpnj7VdOW_iuguX6LzVNsDV35yij6f5--wlW7w9J5eLrGFlHrOlYjVjSyGUACELoVhJFHBNa90sAUhbSyE5qZmGpuFApUiH5C0VvCiZZnyKbo9_k8mvAUKsOhMasFb34IZQ0VzRnClFioSSI9p4F4KHtmpM1Ifs0WtjK0qqQ4lVslcdS0ySu3-SrTddquo0fHOEg15BtXGD71PyU-QviauA6w | 
    
| CitedBy_id | crossref_primary_10_1111_mice_12176 crossref_primary_10_3390_computation11020032 crossref_primary_10_1109_TCYB_2019_2894985 crossref_primary_10_1142_S0218001415390012 crossref_primary_10_3233_ICA_180581 crossref_primary_10_1142_S012906571650012X crossref_primary_10_1016_j_patcog_2020_107526 crossref_primary_10_1111_exsy_12185 crossref_primary_10_1016_j_artmed_2020_101950 crossref_primary_10_1007_s00158_016_1483_5 crossref_primary_10_1142_S0218213015300021 crossref_primary_10_1016_j_knosys_2018_08_018 crossref_primary_10_3233_ICA_160513 crossref_primary_10_3233_ICA_160536 crossref_primary_10_14359_51689360 crossref_primary_10_14359_51689485 crossref_primary_10_1142_S0129065716500210 crossref_primary_10_1007_s12559_017_9485_1 crossref_primary_10_1109_TCYB_2019_2932439 crossref_primary_10_1002_widm_1240 crossref_primary_10_1142_S0129065715500124 crossref_primary_10_1115_1_4049371 crossref_primary_10_7717_peerj_cs_261 crossref_primary_10_1007_s12559_015_9370_8 crossref_primary_10_1515_revneuro_2016_0029 crossref_primary_10_3390_sym13020322  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 ‒ IOS Press and the authors. All rights reserved | 
    
| Copyright_xml | – notice: 2014 ‒ IOS Press and the authors. All rights reserved | 
    
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| DOI | 10.3233/ICA-140468 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering  | 
    
| EISSN | 1875-8835 | 
    
| EndPage | 354 | 
    
| ExternalDocumentID | 10_3233_ICA_140468 10.3233_ICA-140468  | 
    
| GroupedDBID | .4S .DC 0R~ 29J 4.4 5GY AAGLT AAOTM AAQXI ABDBF ABJNI ABUBZ ABUJY ACGFS ACIWK ACPQW ACUHS ADMLS ADZMO AEJQA AENEX AFRHK AFYTF AHDMH AJNRN ALMA_UNASSIGNED_HOLDINGS APPIZ ARCSS ASPBG AVWKF CAG COF DU5 EAD EAP EBS EDO EJD EMK EPL EST ESX FEDTE HZ~ I-F IL9 IOS J8X MET MIO MK~ ML~ MV1 NGNOM O9- P2P PQQKQ Q1R RIG SAUOL SCNPE SFC TUS AAPII AAYXX AJGYC CITATION H13 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c296t-d72b22d4474e458472907e3a1bacdee0fb54530b2aecc3e15430b53f143892a23 | 
    
| ISSN | 1069-2509 | 
    
| IngestDate | Thu Oct 02 12:12:46 EDT 2025 Thu Apr 24 23:12:23 EDT 2025 Wed Oct 01 06:44:50 EDT 2025 Tue Jun 17 22:30:29 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | lazy learning algorithms multi-label classification learning metric label ranking evolutionary algorithms Feature weighting  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c296t-d72b22d4474e458472907e3a1bacdee0fb54530b2aecc3e15430b53f143892a23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1671627708 | 
    
| PQPubID | 23500 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_miscellaneous_1671627708 crossref_citationtrail_10_3233_ICA_140468 crossref_primary_10_3233_ICA_140468 sage_journals_10_3233_ICA_140468  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-01-01 | 
    
| PublicationDateYYYYMMDD | 2014-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London, England | 
    
| PublicationPlace_xml | – name: London, England | 
    
| PublicationTitle | Integrated computer-aided engineering | 
    
| PublicationYear | 2014 | 
    
| Publisher | SAGE Publications | 
    
| Publisher_xml | – name: SAGE Publications | 
    
| SSID | ssj0005027 | 
    
| Score | 2.1585524 | 
    
| Snippet | In the last decade several modern applications where the examples belong to more than one label at a time have attracted the attention of research into machine... | 
    
| SourceID | proquest crossref sage  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 339 | 
    
| SubjectTerms | Algorithms Classifiers Derivatives Evolutionary Mathematical analysis Mathematical models Performance enhancement Weighting methods  | 
    
| Title | Evolutionary feature weighting to improve the performance of multi-label lazy algorithms | 
    
| URI | https://journals.sagepub.com/doi/full/10.3233/ICA-140468 https://www.proquest.com/docview/1671627708  | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1875-8835 dateEnd: 20250202 omitProxy: true ssIdentifier: ssj0005027 issn: 1069-2509 databaseCode: ABDBF dateStart: 19980301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1875-8835 dateEnd: 20250202 omitProxy: false ssIdentifier: ssj0005027 issn: 1069-2509 databaseCode: ADMLS dateStart: 19980301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4EHPgaI8SUjEBKqDI7tfD12o9VAYzzQor5ZTuLApqoZbTbE_nrOH2k81IfBS5RGrhP5Z5_vzne_Q-g1TKKYx1lC4iIVRGR1RHKuawKqPi2zWGW0MA79z8fJ4Ux8msfzrla5zy5pi3fl5da8kv9BFZ4BriZL9h-Q3XQKD-Ae8IUrIAzXa2E8vvDdm9C3WluOzuEv6-y0WVCNSYJcNRfaJUQFOQLmVN2EEhKYBHoxXKjL30O1-N6sTtofnr_8tI9xt3wSNv3NVoAghlayGuqeyrCD7Zvdwqw--lXDBtnxenu3QiQCt4KThDTJCehHeSgqWRRMCRHIPe4YifwWyh0v9N_SmTPjPZ58PBgRQ-rjyulcpcA-_iIns6MjOR3Pp2_OfhJTHcycovtSKTfRDgPpTQdoZ7T_YX_SB_NQW5x389GOiNa88H3_uquqR29PBCF8VquY3kN3vDmARw7b--iGXu6iu940wF7wrnfR7YA38gGah8BjDzzeAI_bBnvgMQCPA-BxU-MAeGyAxz3wD9FsMp4eHBJfIoOULE9aUqWsYKwSIhXanniznKaaq6hQZaU1rQvQkDmsNwVLlWvQl-FHzGtb9J4pxh-hwbJZ6scI52UCqnhVUFXUIuPwz6xWYH9pMHJhE8r30Ntu9GTp-eNNGZOFBDvSjLSE75JupPfQq03bM8easrXVyw4ECULNnFSppW7O1zJKDLFZmlJogw060q-69ZZunlyjm6foVj_Jn6FBuzrXz0GbbIsXfir9ARaheOk | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+feature+weighting+to+improve+the+performance+of+multi-label+lazy+algorithms&rft.jtitle=Integrated+computer-aided+engineering&rft.au=Ventura%2C+Sebastin&rft.date=2014-01-01&rft.issn=1069-2509&rft.volume=21&rft.issue=4&rft.spage=339&rft.epage=354&rft_id=info:doi/10.3233%2FICA-140468&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-2509&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-2509&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-2509&client=summon |