Scalable Multisensor Multitarget Tracking Using the Marginalized \delta-GLMB Density
Existing multisensor multitarget tracking solutions have complexities that grow super-exponentially w.r.t. the number of sensors. In this letter, we propose a novel algorithm for multisensor multitarget tracking that is scalable w.r.t. the number of sensors. Our approach is based on the class of mar...
Saved in:
Published in | IEEE signal processing letters Vol. 23; no. 6; pp. 863 - 867 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-9908 1558-2361 |
DOI | 10.1109/LSP.2016.2557078 |
Cover
Abstract | Existing multisensor multitarget tracking solutions have complexities that grow super-exponentially w.r.t. the number of sensors. In this letter, we propose a novel algorithm for multisensor multitarget tracking that is scalable w.r.t. the number of sensors. Our approach is based on the class of marginalized δ-generalized labeled multi-Bernoulli (Mδ-GLMB) densities, which can be used to define a principled approximation to the δGLMB density representing the true posterior in the sense of the multitarget Bayes filter. We derive the update equations of an MδGLMB density that matches the δ-GLMB density in cardinality distribution and first moment, as well as minimizes the Kullback- Leibler divergence w.r.t. the true δ-GLMB density over the class of Mδ-GLMB densities. The proposed Mδ-GLMB density is then used to define an approximate multisensor sequential update step. Simulations in multisensor scenarios with radar and range-only measurements verify the applicability of the proposed approach. |
---|---|
AbstractList | Existing multisensor multitarget tracking solutions have complexities that grow super-exponentially w.r.t. the number of sensors. In this letter, we propose a novel algorithm for multisensor multitarget tracking that is scalable w.r.t. the number of sensors. Our approach is based on the class of marginalized $\delta$-generalized labeled multi-Bernoulli ($\text{M}\delta$-GLMB) densities, which can be used to define a principled approximation to the $\delta$-GLMB density representing the true posterior in the sense of the multitarget Bayes filter. We derive the update equations of an $\text{M}\delta$-GLMB density that matches the $\delta$-GLMB density in cardinality distribution and first moment, as well as minimizes the Kullback-Leibler divergence w.r.t. the true $\delta$-GLMB density over the class of $\text{M}\delta$-GLMB densities. The proposed $\text{M}\delta$-GLMB density is then used to define an approximate multisensor sequential update step. Simulations in multisensor scenarios with radar and range-only measurements verify the applicability of the proposed approach. Existing multisensor multitarget tracking solutions have complexities that grow super-exponentially w.r.t. the number of sensors. In this letter, we propose a novel algorithm for multisensor multitarget tracking that is scalable w.r.t. the number of sensors. Our approach is based on the class of marginalized δ-generalized labeled multi-Bernoulli (Mδ-GLMB) densities, which can be used to define a principled approximation to the δGLMB density representing the true posterior in the sense of the multitarget Bayes filter. We derive the update equations of an MδGLMB density that matches the δ-GLMB density in cardinality distribution and first moment, as well as minimizes the Kullback- Leibler divergence w.r.t. the true δ-GLMB density over the class of Mδ-GLMB densities. The proposed Mδ-GLMB density is then used to define an approximate multisensor sequential update step. Simulations in multisensor scenarios with radar and range-only measurements verify the applicability of the proposed approach. |
Author | Papi, Francesco Fantacci, Claudio |
Author_xml | – sequence: 1 givenname: Claudio surname: Fantacci fullname: Fantacci, Claudio email: claudio.fantacci@iit.it organization: Dipt. di Ing. dell'Inf., Univ. di Firenze, Florence, Italy – sequence: 2 givenname: Francesco surname: Papi fullname: Papi, Francesco email: papi_francesco@yahoo.it |
BookMark | eNp9kDFPAyEYhompiW11N3G50eUqcMDBqFWrSRtN2m4mhN5BReldBTrUXy_NNQ4OLvAmPA_5vncAek3baAAuERwhBMXNdP46whCxEaa0hCU_AX1EKc9xwVAvZVjCXAjIz8AghA8IIUec9sFiXimnVk5ns52LNugmtL7LUfm1jtnCq-rTNutsGQ5nfE9oerGNcvZb19lbrV1U-WQ6u8vuk27j_hycGuWCvjjeQ7B8fFiMn_Lpy-R5fDvNKyxYTOMYTIgui1qRkq84EUxQvRI1J7TGTKG6ElglhBkKkSEc1RQLAysojBGKF0Nw3f279e3XTocoNzZU2jnV6HYXJOKIQVwgghPKOrTybQheG1mlBaNtm-iVdRJBeahRphrloUZ5rDGJ8I-49Xaj_P4_5apTrNb6Fy8JLTEnxQ-3Vn8l |
CODEN | ISPLEM |
CitedBy_id | crossref_primary_10_3390_s17112546 crossref_primary_10_1109_TAES_2023_3276732 crossref_primary_10_1109_TSP_2020_2986136 crossref_primary_10_1109_TAES_2017_2767910 crossref_primary_10_1109_TAES_2021_3091756 crossref_primary_10_1109_ACCESS_2020_2971624 crossref_primary_10_1109_TAES_2022_3200022 crossref_primary_10_1109_ACCESS_2022_3218324 crossref_primary_10_1109_ACCESS_2019_2893485 crossref_primary_10_1109_LSP_2018_2811750 crossref_primary_10_1109_TSP_2017_2760286 crossref_primary_10_1109_ACCESS_2021_3092021 crossref_primary_10_1109_TAES_2018_2805153 crossref_primary_10_1109_TSP_2017_2688966 crossref_primary_10_1109_TSP_2021_3107632 crossref_primary_10_3390_s19225025 crossref_primary_10_1109_JSEN_2023_3260866 crossref_primary_10_1109_TAES_2018_2884183 crossref_primary_10_1109_TSP_2019_2928953 crossref_primary_10_3390_s20154235 crossref_primary_10_1109_TAES_2023_3299901 crossref_primary_10_1016_j_sigpro_2017_07_031 crossref_primary_10_1109_TSP_2019_2946023 crossref_primary_10_1109_TSP_2024_3472068 crossref_primary_10_1016_j_sigpro_2021_108119 crossref_primary_10_1109_JSEN_2020_3022669 crossref_primary_10_1016_j_sigpro_2020_107501 crossref_primary_10_1109_TAES_2021_3059093 crossref_primary_10_2139_ssrn_4075417 crossref_primary_10_1631_FITEE_1800394 crossref_primary_10_1016_j_sigpro_2022_108772 crossref_primary_10_3390_s18124115 crossref_primary_10_1016_j_dsp_2020_102710 crossref_primary_10_1016_j_dsp_2022_103786 crossref_primary_10_1109_TAES_2024_3373561 crossref_primary_10_1109_TSP_2018_2880704 crossref_primary_10_1109_TSP_2016_2641392 crossref_primary_10_1631_FITEE_2000266 crossref_primary_10_1109_TSP_2017_2723348 crossref_primary_10_3390_s19061307 crossref_primary_10_1016_j_sigpro_2018_04_010 crossref_primary_10_1109_TVT_2020_3047107 crossref_primary_10_1016_j_dsp_2024_104618 crossref_primary_10_1016_j_sigpro_2022_108909 crossref_primary_10_1155_2022_8556477 crossref_primary_10_1111_coin_12264 crossref_primary_10_1109_ACCESS_2021_3052555 |
Cites_doi | 10.1109/ICIF.2010.5711984 10.1109/TAES.2003.1261119 10.1117/12.818024 10.1109/TSP.2008.2007924 10.1109/TSP.2007.894241 10.1109/TAES.2012.6324726 10.1109/TAES.2007.4441756 10.1109/TSP.2015.2443727 10.1109/TAES.2007.4441750 10.1117/12.544027 10.1109/TAC.1979.1102177 10.1109/TSP.2014.2323064 10.1109/TSP.2015.2454478 10.1002/0471221279 10.1007/978-1-4614-6316-0 10.1109/TSP.2006.881190 10.1109/TSP.2013.2259822 10.1109/JSTSP.2013.2250911 10.1117/12.884618 10.1109/TAES.2009.5310327 10.1109/TSP.2014.2364014 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/LSP.2016.2557078 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2361 |
EndPage | 867 |
ExternalDocumentID | 10_1109_LSP_2016_2557078 7457284 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c296t-99f244e73da478b849695eb9d845d26a1dc92a2446f501f481d529f0c09ff9a83 |
IEDL.DBID | RIE |
ISSN | 1070-9908 |
IngestDate | Fri Sep 05 07:52:09 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Tue Jul 01 00:42:13 EDT 2025 Tue Aug 26 16:43:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Finite set statistics (FISST) multisensor generalized labeled multi-Bernoulli (GLMB) marginalized δ-GLMB (Mδ-GLMB) random finite set (RFS) |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-99f244e73da478b849695eb9d845d26a1dc92a2446f501f481d529f0c09ff9a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1816023142 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7457284 crossref_primary_10_1109_LSP_2016_2557078 crossref_citationtrail_10_1109_LSP_2016_2557078 proquest_miscellaneous_1816023142 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-June 2016-6-00 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-June |
PublicationDecade | 2010 |
PublicationTitle | IEEE signal processing letters |
PublicationTitleAbbrev | LSP |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref34 ref12 ref15 farina (ref8) 1986 ref14 ref30 ref33 blackman (ref2) 1999 ref17 ref16 ref19 ref18 delande (ref22) 2010 bar-shalom (ref3) 1988 mahler (ref11) 2014 fantacci (ref31) 2015 kurien (ref5) 1990 ref24 mahler (ref10) 2007 ref23 bar-shalom (ref35) 2002 ref26 ref25 hall (ref1) 2004 ref20 nannuru (ref28) 2015 ref21 farina (ref7) 1985 ref27 ref29 ristic (ref9) 2004 fantacci (ref32) 2015 ref4 mallick (ref6) 2012 schuhmacher (ref36) 2008 mahler (ref13) 0; 39 |
References_xml | – ident: ref25 doi: 10.1109/ICIF.2010.5711984 – volume: 39 start-page: 1152 year: 0 ident: ref13 article-title: Multi-target Bayes filtering via first-order multi-target moments publication-title: IEEE Trans Aerosp Electron Syst doi: 10.1109/TAES.2003.1261119 – year: 1999 ident: ref2 publication-title: Design and Analysis of Modern Tracking Systems – start-page: 64 year: 2010 ident: ref22 article-title: Multi-target PHD filtering: Proposition of extensions to the multi-sensor case – year: 1985 ident: ref7 publication-title: Radar Data Processing Vol I Introduction and Tracking – year: 1986 ident: ref8 publication-title: Radar Data Processing Vol II - Advanced Topics and Applications – ident: ref21 doi: 10.1117/12.818024 – year: 2007 ident: ref10 publication-title: Statistical Multisource-Multitarget Information Fusion – year: 2014 ident: ref11 publication-title: Advances in Statistical Multisource-Multitarget Information Fusion – ident: ref17 doi: 10.1109/TSP.2008.2007924 – ident: ref16 doi: 10.1109/TSP.2007.894241 – ident: ref24 doi: 10.1109/TAES.2012.6324726 – ident: ref15 doi: 10.1109/TAES.2007.4441756 – ident: ref20 doi: 10.1109/TSP.2015.2443727 – ident: ref30 doi: 10.1109/TAES.2007.4441750 – ident: ref23 doi: 10.1117/12.544027 – year: 2004 ident: ref9 publication-title: Beyond the Kalman Filter Particle Filters for Tracking Applications – ident: ref4 doi: 10.1109/TAC.1979.1102177 – ident: ref34 doi: 10.1109/TSP.2014.2323064 – year: 2015 ident: ref28 article-title: Multisensor CPHD filter – ident: ref33 doi: 10.1109/TSP.2015.2454478 – start-page: 1 year: 2008 ident: ref36 article-title: On performance evaluation of multi-object filters publication-title: 2008 11th International Conference on Information Fusion FUSION – year: 2015 ident: ref32 article-title: The Marginalized $\delta$-GLMB Filter – year: 2002 ident: ref35 publication-title: Estimation with Applications to Tracking and Navigation doi: 10.1002/0471221279 – year: 2012 ident: ref6 article-title: Multi-target tracking using multiple hypothesis tracking publication-title: Integrated Tracking Classification and Sensor Management Theory and Applications – year: 1988 ident: ref3 publication-title: Tracking and Data Association – ident: ref12 doi: 10.1007/978-1-4614-6316-0 – ident: ref14 doi: 10.1109/TSP.2006.881190 – ident: ref18 doi: 10.1109/TSP.2013.2259822 – ident: ref27 doi: 10.1109/JSTSP.2013.2250911 – year: 2015 ident: ref31 article-title: Distributed multi-object tracking over sensor networks: A random finite set approach – year: 2004 ident: ref1 publication-title: Mathematical Techniques in Multisensor Data Fusion – ident: ref26 doi: 10.1117/12.884618 – ident: ref29 doi: 10.1109/TAES.2009.5310327 – ident: ref19 doi: 10.1109/TSP.2014.2364014 – start-page: 43 year: 1990 ident: ref5 article-title: Issues in the design of practical multitarget tracking algorithms publication-title: Multitarget-Multisensor Tracking Advanced Applications |
SSID | ssj0008185 |
Score | 2.4471257 |
Snippet | Existing multisensor multitarget tracking solutions have complexities that grow super-exponentially w.r.t. the number of sensors. In this letter, we propose a... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 863 |
SubjectTerms | Algorithms Approximation Approximation algorithms Complexity theory Computer simulation Density Finite set statistics (FISST) generalized labeled multi-Bernoulli (GLMB) History Indexes marginalized δ-GLMB (Mδ-GLMB) Mathematical analysis Mathematical model multisensor Radar Radar tracking random finite set (RFS) Sensors Tracking |
Title | Scalable Multisensor Multitarget Tracking Using the Marginalized \delta-GLMB Density |
URI | https://ieeexplore.ieee.org/document/7457284 https://www.proquest.com/docview/1816023142 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2361 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008185 issn: 1070-9908 databaseCode: RIE dateStart: 19940101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qT3rwLdYXEbwI7na7zSabo69axIqgggdh2TwWxNKKbg_21zuzj1JUxFsOExJmknkk38wAHNmOtIKye0Ithcet6Hg61s7rZqKL0YTMMkXZyINb0X_k10_RUwNOZrkwzrkCfOZ8GhZ_-XZsJvRU1pY8kqhOF2BBSlXmas20LhmeEl8YeKhh4_pLMlDtm_s7wnAJP6R6U9RQbc4EFT1Vfijiwrr0VmBQ76sElbz6k1z7ZvqtZON_N74Ky5WbyU7Lc7EGDTdah6W54oMb8HCP4qHEKVYk4X5gPDt-L8clPJyhHTP0ks4KXAFDV5FRX1zqo_UydZY9WzfMU-_qZnDGLggIn39uwmPv8uG871U9FjwTKpEjqzI08E52bcplrGOuhIqcVjbmkQ1F2rFGhSmSiCwKOhlH9zYKVRaYQKEY07i7Bc3ReOS2gaG-4hrdFxmlEddcqljgnZY6NhmG78K0oF2zPTFVAXLqgzFMikAkUAkKKiFBJZWgWnA8m_FWFt_4g3aD-D6jq1jegsNasgleHPoNSUduPPlI0LURVPyOhzu_T92FRVqgxIXtQTN_n7h99EByfVAcvS-SS9bG |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyNBEC58HNSD65ON7moLXgQnmUz6MX10d41RExGM4EEYph8DsiERnRz011s1MwlBRbz1oZpuqrrr0f1VFcChayonKbsnMkoG3MlmYGLjg1YmWxhNqCzTlI3cu5KdW35xJ-7m4HiaC-O9L8Bnvk7D4i_fjeyYnsoaiguF6nQeFgVGFarM1prqXTI9JcIwDFDHxpNPyVA3ujfXhOKS9YgqTlFLtRkjVHRV-aCKC_vS_gG9yc5KWMn_-jg3dfv6rmjjd7e-BquVo8lOypOxDnN-uAErM-UHN6F_gwKi1ClWpOE-Y0Q7eirHJUCcoSWz9JbOCmQBQ2eRUWdc6qT18Oodu3d-kKfBWbf3h_0jKHz-sgW37dP-305QdVkIbKRljqzK0MR71XIpV7GJuZZaeKNdzIWLZNp0VkcpkshMhM2Mo4MrIp2FNtQoyDRubcPCcDT0P4GhxuIGHRglUsENVzqWeKuViW2GAby0NWhM2J7YqgQ5dcIYJEUoEuoEBZWQoJJKUDU4ms54LMtvfEG7SXyf0lUsr8HBRLIJXh36D0mHfjR-TtC5kVT-jkc7n0_dh6VOv9dNuudXl7uwTIuVKLFfsJA_jf1v9Edys1ccwzcF1toX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Multisensor+Multitarget+Tracking+Using+the+Marginalized+%24%5Cdelta%24-GLMB+Density&rft.jtitle=IEEE+signal+processing+letters&rft.au=Fantacci%2C+Claudio&rft.au=Papi%2C+Francesco&rft.date=2016-06-01&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=23&rft.issue=6&rft.spage=863&rft.epage=867&rft_id=info:doi/10.1109%2FLSP.2016.2557078&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |