Scalable Multisensor Multitarget Tracking Using the Marginalized \delta-GLMB Density

Existing multisensor multitarget tracking solutions have complexities that grow super-exponentially w.r.t. the number of sensors. In this letter, we propose a novel algorithm for multisensor multitarget tracking that is scalable w.r.t. the number of sensors. Our approach is based on the class of mar...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 23; no. 6; pp. 863 - 867
Main Authors Fantacci, Claudio, Papi, Francesco
Format Journal Article
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/LSP.2016.2557078

Cover

Abstract Existing multisensor multitarget tracking solutions have complexities that grow super-exponentially w.r.t. the number of sensors. In this letter, we propose a novel algorithm for multisensor multitarget tracking that is scalable w.r.t. the number of sensors. Our approach is based on the class of marginalized δ-generalized labeled multi-Bernoulli (Mδ-GLMB) densities, which can be used to define a principled approximation to the δGLMB density representing the true posterior in the sense of the multitarget Bayes filter. We derive the update equations of an MδGLMB density that matches the δ-GLMB density in cardinality distribution and first moment, as well as minimizes the Kullback- Leibler divergence w.r.t. the true δ-GLMB density over the class of Mδ-GLMB densities. The proposed Mδ-GLMB density is then used to define an approximate multisensor sequential update step. Simulations in multisensor scenarios with radar and range-only measurements verify the applicability of the proposed approach.
AbstractList Existing multisensor multitarget tracking solutions have complexities that grow super-exponentially w.r.t. the number of sensors. In this letter, we propose a novel algorithm for multisensor multitarget tracking that is scalable w.r.t. the number of sensors. Our approach is based on the class of marginalized $\delta$-generalized labeled multi-Bernoulli ($\text{M}\delta$-GLMB) densities, which can be used to define a principled approximation to the $\delta$-GLMB density representing the true posterior in the sense of the multitarget Bayes filter. We derive the update equations of an $\text{M}\delta$-GLMB density that matches the $\delta$-GLMB density in cardinality distribution and first moment, as well as minimizes the Kullback-Leibler divergence w.r.t. the true $\delta$-GLMB density over the class of $\text{M}\delta$-GLMB densities. The proposed $\text{M}\delta$-GLMB density is then used to define an approximate multisensor sequential update step. Simulations in multisensor scenarios with radar and range-only measurements verify the applicability of the proposed approach.
Existing multisensor multitarget tracking solutions have complexities that grow super-exponentially w.r.t. the number of sensors. In this letter, we propose a novel algorithm for multisensor multitarget tracking that is scalable w.r.t. the number of sensors. Our approach is based on the class of marginalized δ-generalized labeled multi-Bernoulli (Mδ-GLMB) densities, which can be used to define a principled approximation to the δGLMB density representing the true posterior in the sense of the multitarget Bayes filter. We derive the update equations of an MδGLMB density that matches the δ-GLMB density in cardinality distribution and first moment, as well as minimizes the Kullback- Leibler divergence w.r.t. the true δ-GLMB density over the class of Mδ-GLMB densities. The proposed Mδ-GLMB density is then used to define an approximate multisensor sequential update step. Simulations in multisensor scenarios with radar and range-only measurements verify the applicability of the proposed approach.
Author Papi, Francesco
Fantacci, Claudio
Author_xml – sequence: 1
  givenname: Claudio
  surname: Fantacci
  fullname: Fantacci, Claudio
  email: claudio.fantacci@iit.it
  organization: Dipt. di Ing. dell'Inf., Univ. di Firenze, Florence, Italy
– sequence: 2
  givenname: Francesco
  surname: Papi
  fullname: Papi, Francesco
  email: papi_francesco@yahoo.it
BookMark eNp9kDFPAyEYhompiW11N3G50eUqcMDBqFWrSRtN2m4mhN5BReldBTrUXy_NNQ4OLvAmPA_5vncAek3baAAuERwhBMXNdP46whCxEaa0hCU_AX1EKc9xwVAvZVjCXAjIz8AghA8IIUec9sFiXimnVk5ns52LNugmtL7LUfm1jtnCq-rTNutsGQ5nfE9oerGNcvZb19lbrV1U-WQ6u8vuk27j_hycGuWCvjjeQ7B8fFiMn_Lpy-R5fDvNKyxYTOMYTIgui1qRkq84EUxQvRI1J7TGTKG6ElglhBkKkSEc1RQLAysojBGKF0Nw3f279e3XTocoNzZU2jnV6HYXJOKIQVwgghPKOrTybQheG1mlBaNtm-iVdRJBeahRphrloUZ5rDGJ8I-49Xaj_P4_5apTrNb6Fy8JLTEnxQ-3Vn8l
CODEN ISPLEM
CitedBy_id crossref_primary_10_3390_s17112546
crossref_primary_10_1109_TAES_2023_3276732
crossref_primary_10_1109_TSP_2020_2986136
crossref_primary_10_1109_TAES_2017_2767910
crossref_primary_10_1109_TAES_2021_3091756
crossref_primary_10_1109_ACCESS_2020_2971624
crossref_primary_10_1109_TAES_2022_3200022
crossref_primary_10_1109_ACCESS_2022_3218324
crossref_primary_10_1109_ACCESS_2019_2893485
crossref_primary_10_1109_LSP_2018_2811750
crossref_primary_10_1109_TSP_2017_2760286
crossref_primary_10_1109_ACCESS_2021_3092021
crossref_primary_10_1109_TAES_2018_2805153
crossref_primary_10_1109_TSP_2017_2688966
crossref_primary_10_1109_TSP_2021_3107632
crossref_primary_10_3390_s19225025
crossref_primary_10_1109_JSEN_2023_3260866
crossref_primary_10_1109_TAES_2018_2884183
crossref_primary_10_1109_TSP_2019_2928953
crossref_primary_10_3390_s20154235
crossref_primary_10_1109_TAES_2023_3299901
crossref_primary_10_1016_j_sigpro_2017_07_031
crossref_primary_10_1109_TSP_2019_2946023
crossref_primary_10_1109_TSP_2024_3472068
crossref_primary_10_1016_j_sigpro_2021_108119
crossref_primary_10_1109_JSEN_2020_3022669
crossref_primary_10_1016_j_sigpro_2020_107501
crossref_primary_10_1109_TAES_2021_3059093
crossref_primary_10_2139_ssrn_4075417
crossref_primary_10_1631_FITEE_1800394
crossref_primary_10_1016_j_sigpro_2022_108772
crossref_primary_10_3390_s18124115
crossref_primary_10_1016_j_dsp_2020_102710
crossref_primary_10_1016_j_dsp_2022_103786
crossref_primary_10_1109_TAES_2024_3373561
crossref_primary_10_1109_TSP_2018_2880704
crossref_primary_10_1109_TSP_2016_2641392
crossref_primary_10_1631_FITEE_2000266
crossref_primary_10_1109_TSP_2017_2723348
crossref_primary_10_3390_s19061307
crossref_primary_10_1016_j_sigpro_2018_04_010
crossref_primary_10_1109_TVT_2020_3047107
crossref_primary_10_1016_j_dsp_2024_104618
crossref_primary_10_1016_j_sigpro_2022_108909
crossref_primary_10_1155_2022_8556477
crossref_primary_10_1111_coin_12264
crossref_primary_10_1109_ACCESS_2021_3052555
Cites_doi 10.1109/ICIF.2010.5711984
10.1109/TAES.2003.1261119
10.1117/12.818024
10.1109/TSP.2008.2007924
10.1109/TSP.2007.894241
10.1109/TAES.2012.6324726
10.1109/TAES.2007.4441756
10.1109/TSP.2015.2443727
10.1109/TAES.2007.4441750
10.1117/12.544027
10.1109/TAC.1979.1102177
10.1109/TSP.2014.2323064
10.1109/TSP.2015.2454478
10.1002/0471221279
10.1007/978-1-4614-6316-0
10.1109/TSP.2006.881190
10.1109/TSP.2013.2259822
10.1109/JSTSP.2013.2250911
10.1117/12.884618
10.1109/TAES.2009.5310327
10.1109/TSP.2014.2364014
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2016.2557078
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 867
ExternalDocumentID 10_1109_LSP_2016_2557078
7457284
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-99f244e73da478b849695eb9d845d26a1dc92a2446f501f481d529f0c09ff9a83
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Fri Sep 05 07:52:09 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
Tue Jul 01 00:42:13 EDT 2025
Tue Aug 26 16:43:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Finite set statistics (FISST)
multisensor
generalized labeled multi-Bernoulli (GLMB)
marginalized δ-GLMB (Mδ-GLMB)
random finite set (RFS)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-99f244e73da478b849695eb9d845d26a1dc92a2446f501f481d529f0c09ff9a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816023142
PQPubID 23500
PageCount 5
ParticipantIDs ieee_primary_7457284
crossref_primary_10_1109_LSP_2016_2557078
crossref_citationtrail_10_1109_LSP_2016_2557078
proquest_miscellaneous_1816023142
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-June
2016-6-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref34
ref12
ref15
farina (ref8) 1986
ref14
ref30
ref33
blackman (ref2) 1999
ref17
ref16
ref19
ref18
delande (ref22) 2010
bar-shalom (ref3) 1988
mahler (ref11) 2014
fantacci (ref31) 2015
kurien (ref5) 1990
ref24
mahler (ref10) 2007
ref23
bar-shalom (ref35) 2002
ref26
ref25
hall (ref1) 2004
ref20
nannuru (ref28) 2015
ref21
farina (ref7) 1985
ref27
ref29
ristic (ref9) 2004
fantacci (ref32) 2015
ref4
mallick (ref6) 2012
schuhmacher (ref36) 2008
mahler (ref13) 0; 39
References_xml – ident: ref25
  doi: 10.1109/ICIF.2010.5711984
– volume: 39
  start-page: 1152
  year: 0
  ident: ref13
  article-title: Multi-target Bayes filtering via first-order multi-target moments
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2003.1261119
– year: 1999
  ident: ref2
  publication-title: Design and Analysis of Modern Tracking Systems
– start-page: 64
  year: 2010
  ident: ref22
  article-title: Multi-target PHD filtering: Proposition of extensions to the multi-sensor case
– year: 1985
  ident: ref7
  publication-title: Radar Data Processing Vol I Introduction and Tracking
– year: 1986
  ident: ref8
  publication-title: Radar Data Processing Vol II - Advanced Topics and Applications
– ident: ref21
  doi: 10.1117/12.818024
– year: 2007
  ident: ref10
  publication-title: Statistical Multisource-Multitarget Information Fusion
– year: 2014
  ident: ref11
  publication-title: Advances in Statistical Multisource-Multitarget Information Fusion
– ident: ref17
  doi: 10.1109/TSP.2008.2007924
– ident: ref16
  doi: 10.1109/TSP.2007.894241
– ident: ref24
  doi: 10.1109/TAES.2012.6324726
– ident: ref15
  doi: 10.1109/TAES.2007.4441756
– ident: ref20
  doi: 10.1109/TSP.2015.2443727
– ident: ref30
  doi: 10.1109/TAES.2007.4441750
– ident: ref23
  doi: 10.1117/12.544027
– year: 2004
  ident: ref9
  publication-title: Beyond the Kalman Filter Particle Filters for Tracking Applications
– ident: ref4
  doi: 10.1109/TAC.1979.1102177
– ident: ref34
  doi: 10.1109/TSP.2014.2323064
– year: 2015
  ident: ref28
  article-title: Multisensor CPHD filter
– ident: ref33
  doi: 10.1109/TSP.2015.2454478
– start-page: 1
  year: 2008
  ident: ref36
  article-title: On performance evaluation of multi-object filters
  publication-title: 2008 11th International Conference on Information Fusion FUSION
– year: 2015
  ident: ref32
  article-title: The Marginalized $\delta$-GLMB Filter
– year: 2002
  ident: ref35
  publication-title: Estimation with Applications to Tracking and Navigation
  doi: 10.1002/0471221279
– year: 2012
  ident: ref6
  article-title: Multi-target tracking using multiple hypothesis tracking
  publication-title: Integrated Tracking Classification and Sensor Management Theory and Applications
– year: 1988
  ident: ref3
  publication-title: Tracking and Data Association
– ident: ref12
  doi: 10.1007/978-1-4614-6316-0
– ident: ref14
  doi: 10.1109/TSP.2006.881190
– ident: ref18
  doi: 10.1109/TSP.2013.2259822
– ident: ref27
  doi: 10.1109/JSTSP.2013.2250911
– year: 2015
  ident: ref31
  article-title: Distributed multi-object tracking over sensor networks: A random finite set approach
– year: 2004
  ident: ref1
  publication-title: Mathematical Techniques in Multisensor Data Fusion
– ident: ref26
  doi: 10.1117/12.884618
– ident: ref29
  doi: 10.1109/TAES.2009.5310327
– ident: ref19
  doi: 10.1109/TSP.2014.2364014
– start-page: 43
  year: 1990
  ident: ref5
  article-title: Issues in the design of practical multitarget tracking algorithms
  publication-title: Multitarget-Multisensor Tracking Advanced Applications
SSID ssj0008185
Score 2.4471257
Snippet Existing multisensor multitarget tracking solutions have complexities that grow super-exponentially w.r.t. the number of sensors. In this letter, we propose a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 863
SubjectTerms Algorithms
Approximation
Approximation algorithms
Complexity theory
Computer simulation
Density
Finite set statistics (FISST)
generalized labeled multi-Bernoulli (GLMB)
History
Indexes
marginalized δ-GLMB (Mδ-GLMB)
Mathematical analysis
Mathematical model
multisensor
Radar
Radar tracking
random finite set (RFS)
Sensors
Tracking
Title Scalable Multisensor Multitarget Tracking Using the Marginalized \delta-GLMB Density
URI https://ieeexplore.ieee.org/document/7457284
https://www.proquest.com/docview/1816023142
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qT3rwLdYXEbwI7na7zSabo69axIqgggdh2TwWxNKKbg_21zuzj1JUxFsOExJmknkk38wAHNmOtIKye0Ithcet6Hg61s7rZqKL0YTMMkXZyINb0X_k10_RUwNOZrkwzrkCfOZ8GhZ_-XZsJvRU1pY8kqhOF2BBSlXmas20LhmeEl8YeKhh4_pLMlDtm_s7wnAJP6R6U9RQbc4EFT1Vfijiwrr0VmBQ76sElbz6k1z7ZvqtZON_N74Ky5WbyU7Lc7EGDTdah6W54oMb8HCP4qHEKVYk4X5gPDt-L8clPJyhHTP0ks4KXAFDV5FRX1zqo_UydZY9WzfMU-_qZnDGLggIn39uwmPv8uG871U9FjwTKpEjqzI08E52bcplrGOuhIqcVjbmkQ1F2rFGhSmSiCwKOhlH9zYKVRaYQKEY07i7Bc3ReOS2gaG-4hrdFxmlEddcqljgnZY6NhmG78K0oF2zPTFVAXLqgzFMikAkUAkKKiFBJZWgWnA8m_FWFt_4g3aD-D6jq1jegsNasgleHPoNSUduPPlI0LURVPyOhzu_T92FRVqgxIXtQTN_n7h99EByfVAcvS-SS9bG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyNBEC58HNSD65ON7moLXgQnmUz6MX10d41RExGM4EEYph8DsiERnRz011s1MwlBRbz1oZpuqrrr0f1VFcChayonKbsnMkoG3MlmYGLjg1YmWxhNqCzTlI3cu5KdW35xJ-7m4HiaC-O9L8Bnvk7D4i_fjeyYnsoaiguF6nQeFgVGFarM1prqXTI9JcIwDFDHxpNPyVA3ujfXhOKS9YgqTlFLtRkjVHRV-aCKC_vS_gG9yc5KWMn_-jg3dfv6rmjjd7e-BquVo8lOypOxDnN-uAErM-UHN6F_gwKi1ClWpOE-Y0Q7eirHJUCcoSWz9JbOCmQBQ2eRUWdc6qT18Oodu3d-kKfBWbf3h_0jKHz-sgW37dP-305QdVkIbKRljqzK0MR71XIpV7GJuZZaeKNdzIWLZNp0VkcpkshMhM2Mo4MrIp2FNtQoyDRubcPCcDT0P4GhxuIGHRglUsENVzqWeKuViW2GAby0NWhM2J7YqgQ5dcIYJEUoEuoEBZWQoJJKUDU4ms54LMtvfEG7SXyf0lUsr8HBRLIJXh36D0mHfjR-TtC5kVT-jkc7n0_dh6VOv9dNuudXl7uwTIuVKLFfsJA_jf1v9Edys1ccwzcF1toX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Multisensor+Multitarget+Tracking+Using+the+Marginalized+%24%5Cdelta%24-GLMB+Density&rft.jtitle=IEEE+signal+processing+letters&rft.au=Fantacci%2C+Claudio&rft.au=Papi%2C+Francesco&rft.date=2016-06-01&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=23&rft.issue=6&rft.spage=863&rft.epage=867&rft_id=info:doi/10.1109%2FLSP.2016.2557078&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon