Scalable Multisensor Multitarget Tracking Using the Marginalized \delta-GLMB Density
Existing multisensor multitarget tracking solutions have complexities that grow super-exponentially w.r.t. the number of sensors. In this letter, we propose a novel algorithm for multisensor multitarget tracking that is scalable w.r.t. the number of sensors. Our approach is based on the class of mar...
Saved in:
Published in | IEEE signal processing letters Vol. 23; no. 6; pp. 863 - 867 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-9908 1558-2361 |
DOI | 10.1109/LSP.2016.2557078 |
Cover
Summary: | Existing multisensor multitarget tracking solutions have complexities that grow super-exponentially w.r.t. the number of sensors. In this letter, we propose a novel algorithm for multisensor multitarget tracking that is scalable w.r.t. the number of sensors. Our approach is based on the class of marginalized δ-generalized labeled multi-Bernoulli (Mδ-GLMB) densities, which can be used to define a principled approximation to the δGLMB density representing the true posterior in the sense of the multitarget Bayes filter. We derive the update equations of an MδGLMB density that matches the δ-GLMB density in cardinality distribution and first moment, as well as minimizes the Kullback- Leibler divergence w.r.t. the true δ-GLMB density over the class of Mδ-GLMB densities. The proposed Mδ-GLMB density is then used to define an approximate multisensor sequential update step. Simulations in multisensor scenarios with radar and range-only measurements verify the applicability of the proposed approach. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2016.2557078 |