Constrained Least Mean M-Estimation Adaptive Filtering Algorithm
In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of its low computational complexity. However, the performance of constrained LMS algorithm will degrade under correlated input or non-Gaussian no...
        Saved in:
      
    
          | Published in | IEEE transactions on circuits and systems. II, Express briefs Vol. 68; no. 4; pp. 1507 - 1511 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.04.2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1549-7747 1558-3791  | 
| DOI | 10.1109/TCSII.2020.3022081 | 
Cover
| Abstract | In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of its low computational complexity. However, the performance of constrained LMS algorithm will degrade under correlated input or non-Gaussian noise. In order to overcome this defect, this brief proposes a constrained least mean M-estimation (CLMM) algorithm, which uses the M-estimation cost function for the constrained adaptive filter. Compared with the previous algorithms for non-Gaussian noise, such as constrained maximum correntropy criterion (CMCC) algorithm and constrained minimum error entropy (CMEE) algorithm, the proposed CLMM algorithm has lower computational complexity and better steady-state performance. In addition, the step-size range is determined by analyzing the mean square stability, which ensures the stability of the proposed CLMM algorithm. Simulation results illustrate that the proposed CLMM algorithm has better steady-state performance than previous algorithms in non-Gaussian noises with multi-peak distribution. | 
    
|---|---|
| AbstractList | In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of its low computational complexity. However, the performance of constrained LMS algorithm will degrade under correlated input or non-Gaussian noise. In order to overcome this defect, this brief proposes a constrained least mean M-estimation (CLMM) algorithm, which uses the M-estimation cost function for the constrained adaptive filter. Compared with the previous algorithms for non-Gaussian noise, such as constrained maximum correntropy criterion (CMCC) algorithm and constrained minimum error entropy (CMEE) algorithm, the proposed CLMM algorithm has lower computational complexity and better steady-state performance. In addition, the step-size range is determined by analyzing the mean square stability, which ensures the stability of the proposed CLMM algorithm. Simulation results illustrate that the proposed CLMM algorithm has better steady-state performance than previous algorithms in non-Gaussian noises with multi-peak distribution. | 
    
| Author | Zeng, Xiangping Wang, Zhuonan Zhao, Haiquan  | 
    
| Author_xml | – sequence: 1 givenname: Zhuonan orcidid: 0000-0001-7246-5155 surname: Wang fullname: Wang, Zhuonan email: 1745694733@qq.com organization: Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, and the School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China – sequence: 2 givenname: Haiquan orcidid: 0000-0003-0198-1384 surname: Zhao fullname: Zhao, Haiquan email: hqzhao_swjtu@126.com organization: Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, and the School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China – sequence: 3 givenname: Xiangping orcidid: 0000-0001-8721-2548 surname: Zeng fullname: Zeng, Xiangping email: zxping163@163.com organization: Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, and the School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China  | 
    
| BookMark | eNp9kD1PwzAQhi1UJNrCH4AlEnPK2c6HvVFFLURqxUB3y0ns4ip1iu0i8e9J2oqBgene4Z47vc8EjWxnFUL3GGYYA3_aFO9lOSNAYEaBEGD4Co1xmrKY5hyPhpzwOM-T_AZNvN8BEA6UjNFz0VkfnDRWNdFKSR-itZI2WscLH8xeBtPZaN7IQzBfKlqaNihn7Daat9vOmfCxv0XXWrZe3V3mFG2Wi03xGq_eXspivoprwtMQ64xJijPMVJamJGVNVVFZccgozRquOTCta9LwnICUXGKoOK8g0Xld91HSKXo8nz247vOofBC77uhs_1GQFLIMEuCk32Lnrdp13julRW3CqcNQsRUYxKBLnHSJQZe46OpR8gc9uL6_-_4fejhDRin1C3DMcoIp_QHlF3dB | 
    
| CODEN | ICSPE5 | 
    
| CitedBy_id | crossref_primary_10_1109_JSEN_2022_3201584 crossref_primary_10_1016_j_ins_2023_120026 crossref_primary_10_1109_TCSII_2023_3253500 crossref_primary_10_1109_TCSII_2023_3252597 crossref_primary_10_1016_j_sigpro_2021_108433 crossref_primary_10_1109_TCSII_2020_3037877 crossref_primary_10_1109_LSP_2023_3252412 crossref_primary_10_1109_TCSII_2022_3157604 crossref_primary_10_1109_TCSII_2023_3275979 crossref_primary_10_1109_JSEN_2023_3325846 crossref_primary_10_1109_TCSII_2022_3218714 crossref_primary_10_1109_TCSII_2021_3073961 crossref_primary_10_1109_TSMC_2024_3408414 crossref_primary_10_1109_TCSII_2021_3058327 crossref_primary_10_1109_TCSII_2021_3082425 crossref_primary_10_3390_electronics13010109 crossref_primary_10_1155_2022_9095614 crossref_primary_10_1109_TCSII_2021_3063491 crossref_primary_10_1109_TIA_2020_3045961 crossref_primary_10_1109_TSP_2022_3233528 crossref_primary_10_1109_LSP_2023_3242123 crossref_primary_10_1109_TCSII_2021_3056708  | 
    
| Cites_doi | 10.1109/PROC.1972.8817 10.1016/j.sigpro.2017.05.009 10.1109/TCSII.2019.2897620 10.1109/APSIPAASC47483.2019.9023083 10.1007/978-3-662-05592-2_3 10.1109/TCSII.2017.2789207 10.1007/s00034-019-01135-9 10.1109/TIE.2010.2098359 10.1109/TSP.2012.2217339 10.1109/TCSII.2015.2435711 10.1016/j.sigpro.2015.08.021 10.1016/j.sigpro.2015.05.011 10.1002/0471221104 10.1109/TSP.2005.859348 10.1016/j.dsp.2018.07.021 10.1109/LSP.2014.2325495  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M  | 
    
| DOI | 10.1109/TCSII.2020.3022081 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1558-3791 | 
    
| EndPage | 1511 | 
    
| ExternalDocumentID | 10_1109_TCSII_2020_3022081 9187213  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Sichuan Science and Technology Program grantid: 19YYJC0681 funderid: 10.13039/100012542 – fundername: National Rail Transportation Electrification and Automation Engineering Technology Research Center grantid: NEEC-2019-A02 – fundername: National Science Foundation of China grantid: 61871461; 61571374; 61433011 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | 0R~ 29I 4.4 5VS 6IK 6J9 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PZZ RIA RIE RNS RXW TAE TAF VJK AAYXX CITATION 7SP 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c295t-f68a31618e655258dbb3ab906336d9f908ffc2d9720aa9a10b99b04f7cc0b9a3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1549-7747 | 
    
| IngestDate | Sun Oct 05 00:14:55 EDT 2025 Wed Oct 01 01:50:26 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 Wed Aug 27 02:50:21 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c295t-f68a31618e655258dbb3ab906336d9f908ffc2d9720aa9a10b99b04f7cc0b9a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-7246-5155 0000-0001-8721-2548 0000-0003-0198-1384  | 
    
| PQID | 2506604092 | 
    
| PQPubID | 85412 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TCSII_2020_3022081 crossref_primary_10_1109_TCSII_2020_3022081 proquest_journals_2506604092 ieee_primary_9187213  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-04-01 | 
    
| PublicationDateYYYYMMDD | 2021-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on circuits and systems. II, Express briefs | 
    
| PublicationTitleAbbrev | TCSII | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref12 ref15 zayyani (ref9) 2014; 21 ref14 ref11 ref10 chen (ref13) 2013 ref2 ref1 ref17 ref16 ref8 ref7 trees (ref3) 2002 ref4 ref6 ref5  | 
    
| References_xml | – ident: ref2 doi: 10.1109/PROC.1972.8817 – ident: ref10 doi: 10.1016/j.sigpro.2017.05.009 – ident: ref14 doi: 10.1109/TCSII.2019.2897620 – ident: ref11 doi: 10.1109/APSIPAASC47483.2019.9023083 – year: 2013 ident: ref13 publication-title: Information Theoretic Criteria and Algorithms for System Parameter Identification – ident: ref1 doi: 10.1007/978-3-662-05592-2_3 – ident: ref12 doi: 10.1109/TCSII.2017.2789207 – ident: ref8 doi: 10.1007/s00034-019-01135-9 – ident: ref16 doi: 10.1109/TIE.2010.2098359 – ident: ref5 doi: 10.1109/TSP.2012.2217339 – ident: ref7 doi: 10.1109/TCSII.2015.2435711 – ident: ref15 doi: 10.1016/j.sigpro.2015.08.021 – ident: ref4 doi: 10.1016/j.sigpro.2015.05.011 – year: 2002 ident: ref3 publication-title: Optimum Array Processing Part IV of Detection Estimation and Modulation Theory doi: 10.1002/0471221104 – ident: ref6 doi: 10.1109/TSP.2005.859348 – ident: ref17 doi: 10.1016/j.dsp.2018.07.021 – volume: 21 start-page: 1108 year: 2014 ident: ref9 article-title: Continuous mixed p-norm adaptive algorithm for system identification publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2014.2325495  | 
    
| SSID | ssj0029032 | 
    
| Score | 2.4486122 | 
    
| Snippet | In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1507 | 
    
| SubjectTerms | Adaptive algorithms Adaptive filters Adaptive systems Algorithms Circuit stability Complexity Computational complexity Constrained adaptive filtering Cost function Filtering algorithms M-estimate Mathematical model non-Gaussian noises Random noise Stability analysis Steady state system identification  | 
    
| Title | Constrained Least Mean M-Estimation Adaptive Filtering Algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/9187213 https://www.proquest.com/docview/2506604092  | 
    
| Volume | 68 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] customDbUrl: eissn: 1558-3791 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029032 issn: 1549-7747 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJz34QiOKZg_edKHbffYmMRAwrhcx4bbpa5WIC8Hl4q-37T7iK8ZbD52knWlnvmnnAXDBFIoWjn7_4g6xPc49mwmEbBYqW8ZTEURC5w7H98H40bud-bMGXNW5MFJKE3wme3po_vLFkm_0U1mfOJFyWNwmNMMoKHK1aueKINOMTFccU4jRC6sEGUT605uHyUS5glh5qDqxNHK-GCHTVeWHKjb2ZbQLcbWyIqzkpbfJWY-_fyva-N-l78FOCTStQXEy9qEhswPY_lR-sA3Xulun6REhhXWnm_hYsaSZFdtDdfGLnEZrIOhKq0RrNNcf64rQGiyelut5_vx6CNPRcHoztsuOCjbHxM_tNIioq0vky8D3sR8JxlzKiIIpbiBISlCUphwLEmJEKaEOYoQw5KUh52pI3SNoZctMHoMlQoql66YhDRXmcxlTuJBGROBUCuUCsg44FYcTXlYb1xtaJMbrQCQxUkm0VJJSKh24rGlWRa2NP2e3NZvrmSWHO9CtBJmU1_EtUTgvCJS6Ivjkd6pT2MI6WMWE5HShla838kyhjZydm2P2Aferz18 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHtSDLzSiqHvwpgvd7rM3CYGAslzEhNumr1UiAsHl4q-37S7EV4y3HjpJO9POfNPOA-CKKRQtHP3-xR1ie5x7NhMI2SxUtoynIoiEzh2OB0H30bsb-aMS3KxzYaSUJvhM1vXQ_OWLGV_qp7IGcSLlsLgbsOl7nufn2Vpr94og045M1xxTmNELVykyiDSGrYdeTzmDWPmoOrU0cr6YIdNX5YcyNhamswfxam15YMlLfZmxOn__Vrbxv4vfh90CalrN_GwcQElOD2HnUwHCCtzqfp2mS4QUVl-38bFiSadWbLfV1c-zGq2moHOtFK3OWH-tK0KrOXmaLcbZ8-sRDDvtYatrFz0VbI6Jn9lpEFFXF8mXge9jPxKMuZQRBVTcQJCUoChNORYkxIhSQh3ECGHIS0PO1ZC6x1CezqbyBCwRUixdNw1pqFCfy5hChjQiAqdSKCeQVcFZcTjhRb1xvaFJYvwORBIjlURLJSmkUoXrNc08r7bx5-yKZvN6ZsHhKtRWgkyKC_mWKKQXBEphEXz6O9UlbHWHcT_p9wb3Z7CNdeiKCdCpQTlbLOW5wh4ZuzBH7gMA09Ks | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Least+Mean+M-Estimation+Adaptive+Filtering+Algorithm&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+II%2C+Express+briefs&rft.au=Wang%2C+Zhuonan&rft.au=Zhao%2C+Haiquan&rft.au=Zeng%2C+Xiangping&rft.date=2021-04-01&rft.issn=1549-7747&rft.eissn=1558-3791&rft.volume=68&rft.issue=4&rft.spage=1507&rft.epage=1511&rft_id=info:doi/10.1109%2FTCSII.2020.3022081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSII_2020_3022081 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-7747&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-7747&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-7747&client=summon |