Constrained Least Mean M-Estimation Adaptive Filtering Algorithm

In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of its low computational complexity. However, the performance of constrained LMS algorithm will degrade under correlated input or non-Gaussian no...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. II, Express briefs Vol. 68; no. 4; pp. 1507 - 1511
Main Authors Wang, Zhuonan, Zhao, Haiquan, Zeng, Xiangping
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1549-7747
1558-3791
DOI10.1109/TCSII.2020.3022081

Cover

Abstract In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of its low computational complexity. However, the performance of constrained LMS algorithm will degrade under correlated input or non-Gaussian noise. In order to overcome this defect, this brief proposes a constrained least mean M-estimation (CLMM) algorithm, which uses the M-estimation cost function for the constrained adaptive filter. Compared with the previous algorithms for non-Gaussian noise, such as constrained maximum correntropy criterion (CMCC) algorithm and constrained minimum error entropy (CMEE) algorithm, the proposed CLMM algorithm has lower computational complexity and better steady-state performance. In addition, the step-size range is determined by analyzing the mean square stability, which ensures the stability of the proposed CLMM algorithm. Simulation results illustrate that the proposed CLMM algorithm has better steady-state performance than previous algorithms in non-Gaussian noises with multi-peak distribution.
AbstractList In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of its low computational complexity. However, the performance of constrained LMS algorithm will degrade under correlated input or non-Gaussian noise. In order to overcome this defect, this brief proposes a constrained least mean M-estimation (CLMM) algorithm, which uses the M-estimation cost function for the constrained adaptive filter. Compared with the previous algorithms for non-Gaussian noise, such as constrained maximum correntropy criterion (CMCC) algorithm and constrained minimum error entropy (CMEE) algorithm, the proposed CLMM algorithm has lower computational complexity and better steady-state performance. In addition, the step-size range is determined by analyzing the mean square stability, which ensures the stability of the proposed CLMM algorithm. Simulation results illustrate that the proposed CLMM algorithm has better steady-state performance than previous algorithms in non-Gaussian noises with multi-peak distribution.
Author Zeng, Xiangping
Wang, Zhuonan
Zhao, Haiquan
Author_xml – sequence: 1
  givenname: Zhuonan
  orcidid: 0000-0001-7246-5155
  surname: Wang
  fullname: Wang, Zhuonan
  email: 1745694733@qq.com
  organization: Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, and the School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China
– sequence: 2
  givenname: Haiquan
  orcidid: 0000-0003-0198-1384
  surname: Zhao
  fullname: Zhao, Haiquan
  email: hqzhao_swjtu@126.com
  organization: Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, and the School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China
– sequence: 3
  givenname: Xiangping
  orcidid: 0000-0001-8721-2548
  surname: Zeng
  fullname: Zeng, Xiangping
  email: zxping163@163.com
  organization: Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, and the School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China
BookMark eNp9kD1PwzAQhi1UJNrCH4AlEnPK2c6HvVFFLURqxUB3y0ns4ip1iu0i8e9J2oqBgene4Z47vc8EjWxnFUL3GGYYA3_aFO9lOSNAYEaBEGD4Co1xmrKY5hyPhpzwOM-T_AZNvN8BEA6UjNFz0VkfnDRWNdFKSR-itZI2WscLH8xeBtPZaN7IQzBfKlqaNihn7Daat9vOmfCxv0XXWrZe3V3mFG2Wi03xGq_eXspivoprwtMQ64xJijPMVJamJGVNVVFZccgozRquOTCta9LwnICUXGKoOK8g0Xld91HSKXo8nz247vOofBC77uhs_1GQFLIMEuCk32Lnrdp13julRW3CqcNQsRUYxKBLnHSJQZe46OpR8gc9uL6_-_4fejhDRin1C3DMcoIp_QHlF3dB
CODEN ICSPE5
CitedBy_id crossref_primary_10_1109_JSEN_2022_3201584
crossref_primary_10_1016_j_ins_2023_120026
crossref_primary_10_1109_TCSII_2023_3253500
crossref_primary_10_1109_TCSII_2023_3252597
crossref_primary_10_1016_j_sigpro_2021_108433
crossref_primary_10_1109_TCSII_2020_3037877
crossref_primary_10_1109_LSP_2023_3252412
crossref_primary_10_1109_TCSII_2022_3157604
crossref_primary_10_1109_TCSII_2023_3275979
crossref_primary_10_1109_JSEN_2023_3325846
crossref_primary_10_1109_TCSII_2022_3218714
crossref_primary_10_1109_TCSII_2021_3073961
crossref_primary_10_1109_TSMC_2024_3408414
crossref_primary_10_1109_TCSII_2021_3058327
crossref_primary_10_1109_TCSII_2021_3082425
crossref_primary_10_3390_electronics13010109
crossref_primary_10_1155_2022_9095614
crossref_primary_10_1109_TCSII_2021_3063491
crossref_primary_10_1109_TIA_2020_3045961
crossref_primary_10_1109_TSP_2022_3233528
crossref_primary_10_1109_LSP_2023_3242123
crossref_primary_10_1109_TCSII_2021_3056708
Cites_doi 10.1109/PROC.1972.8817
10.1016/j.sigpro.2017.05.009
10.1109/TCSII.2019.2897620
10.1109/APSIPAASC47483.2019.9023083
10.1007/978-3-662-05592-2_3
10.1109/TCSII.2017.2789207
10.1007/s00034-019-01135-9
10.1109/TIE.2010.2098359
10.1109/TSP.2012.2217339
10.1109/TCSII.2015.2435711
10.1016/j.sigpro.2015.08.021
10.1016/j.sigpro.2015.05.011
10.1002/0471221104
10.1109/TSP.2005.859348
10.1016/j.dsp.2018.07.021
10.1109/LSP.2014.2325495
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSII.2020.3022081
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3791
EndPage 1511
ExternalDocumentID 10_1109_TCSII_2020_3022081
9187213
Genre orig-research
GrantInformation_xml – fundername: Sichuan Science and Technology Program
  grantid: 19YYJC0681
  funderid: 10.13039/100012542
– fundername: National Rail Transportation Electrification and Automation Engineering Technology Research Center
  grantid: NEEC-2019-A02
– fundername: National Science Foundation of China
  grantid: 61871461; 61571374; 61433011
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5VS
6IK
6J9
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-f68a31618e655258dbb3ab906336d9f908ffc2d9720aa9a10b99b04f7cc0b9a3
IEDL.DBID RIE
ISSN 1549-7747
IngestDate Sun Oct 05 00:14:55 EDT 2025
Wed Oct 01 01:50:26 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Wed Aug 27 02:50:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-f68a31618e655258dbb3ab906336d9f908ffc2d9720aa9a10b99b04f7cc0b9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7246-5155
0000-0001-8721-2548
0000-0003-0198-1384
PQID 2506604092
PQPubID 85412
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_TCSII_2020_3022081
crossref_primary_10_1109_TCSII_2020_3022081
proquest_journals_2506604092
ieee_primary_9187213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. II, Express briefs
PublicationTitleAbbrev TCSII
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
zayyani (ref9) 2014; 21
ref14
ref11
ref10
chen (ref13) 2013
ref2
ref1
ref17
ref16
ref8
ref7
trees (ref3) 2002
ref4
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/PROC.1972.8817
– ident: ref10
  doi: 10.1016/j.sigpro.2017.05.009
– ident: ref14
  doi: 10.1109/TCSII.2019.2897620
– ident: ref11
  doi: 10.1109/APSIPAASC47483.2019.9023083
– year: 2013
  ident: ref13
  publication-title: Information Theoretic Criteria and Algorithms for System Parameter Identification
– ident: ref1
  doi: 10.1007/978-3-662-05592-2_3
– ident: ref12
  doi: 10.1109/TCSII.2017.2789207
– ident: ref8
  doi: 10.1007/s00034-019-01135-9
– ident: ref16
  doi: 10.1109/TIE.2010.2098359
– ident: ref5
  doi: 10.1109/TSP.2012.2217339
– ident: ref7
  doi: 10.1109/TCSII.2015.2435711
– ident: ref15
  doi: 10.1016/j.sigpro.2015.08.021
– ident: ref4
  doi: 10.1016/j.sigpro.2015.05.011
– year: 2002
  ident: ref3
  publication-title: Optimum Array Processing Part IV of Detection Estimation and Modulation Theory
  doi: 10.1002/0471221104
– ident: ref6
  doi: 10.1109/TSP.2005.859348
– ident: ref17
  doi: 10.1016/j.dsp.2018.07.021
– volume: 21
  start-page: 1108
  year: 2014
  ident: ref9
  article-title: Continuous mixed p-norm adaptive algorithm for system identification
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2014.2325495
SSID ssj0029032
Score 2.4486122
Snippet In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1507
SubjectTerms Adaptive algorithms
Adaptive filters
Adaptive systems
Algorithms
Circuit stability
Complexity
Computational complexity
Constrained adaptive filtering
Cost function
Filtering algorithms
M-estimate
Mathematical model
non-Gaussian noises
Random noise
Stability analysis
Steady state
system identification
Title Constrained Least Mean M-Estimation Adaptive Filtering Algorithm
URI https://ieeexplore.ieee.org/document/9187213
https://www.proquest.com/docview/2506604092
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  customDbUrl:
  eissn: 1558-3791
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029032
  issn: 1549-7747
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJz34QiOKZg_edKHbffYmMRAwrhcx4bbpa5WIC8Hl4q-37T7iK8ZbD52knWlnvmnnAXDBFIoWjn7_4g6xPc49mwmEbBYqW8ZTEURC5w7H98H40bud-bMGXNW5MFJKE3wme3po_vLFkm_0U1mfOJFyWNwmNMMoKHK1aueKINOMTFccU4jRC6sEGUT605uHyUS5glh5qDqxNHK-GCHTVeWHKjb2ZbQLcbWyIqzkpbfJWY-_fyva-N-l78FOCTStQXEy9qEhswPY_lR-sA3Xulun6REhhXWnm_hYsaSZFdtDdfGLnEZrIOhKq0RrNNcf64rQGiyelut5_vx6CNPRcHoztsuOCjbHxM_tNIioq0vky8D3sR8JxlzKiIIpbiBISlCUphwLEmJEKaEOYoQw5KUh52pI3SNoZctMHoMlQoql66YhDRXmcxlTuJBGROBUCuUCsg44FYcTXlYb1xtaJMbrQCQxUkm0VJJSKh24rGlWRa2NP2e3NZvrmSWHO9CtBJmU1_EtUTgvCJS6Ivjkd6pT2MI6WMWE5HShla838kyhjZydm2P2Aferz18
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHtSDLzSiqHvwpgvd7rM3CYGAslzEhNumr1UiAsHl4q-37S7EV4y3HjpJO9POfNPOA-CKKRQtHP3-xR1ie5x7NhMI2SxUtoynIoiEzh2OB0H30bsb-aMS3KxzYaSUJvhM1vXQ_OWLGV_qp7IGcSLlsLgbsOl7nufn2Vpr94og045M1xxTmNELVykyiDSGrYdeTzmDWPmoOrU0cr6YIdNX5YcyNhamswfxam15YMlLfZmxOn__Vrbxv4vfh90CalrN_GwcQElOD2HnUwHCCtzqfp2mS4QUVl-38bFiSadWbLfV1c-zGq2moHOtFK3OWH-tK0KrOXmaLcbZ8-sRDDvtYatrFz0VbI6Jn9lpEFFXF8mXge9jPxKMuZQRBVTcQJCUoChNORYkxIhSQh3ECGHIS0PO1ZC6x1CezqbyBCwRUixdNw1pqFCfy5hChjQiAqdSKCeQVcFZcTjhRb1xvaFJYvwORBIjlURLJSmkUoXrNc08r7bx5-yKZvN6ZsHhKtRWgkyKC_mWKKQXBEphEXz6O9UlbHWHcT_p9wb3Z7CNdeiKCdCpQTlbLOW5wh4ZuzBH7gMA09Ks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Least+Mean+M-Estimation+Adaptive+Filtering+Algorithm&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+II%2C+Express+briefs&rft.au=Wang%2C+Zhuonan&rft.au=Zhao%2C+Haiquan&rft.au=Zeng%2C+Xiangping&rft.date=2021-04-01&rft.issn=1549-7747&rft.eissn=1558-3791&rft.volume=68&rft.issue=4&rft.spage=1507&rft.epage=1511&rft_id=info:doi/10.1109%2FTCSII.2020.3022081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSII_2020_3022081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-7747&client=summon