Constrained Least Mean M-Estimation Adaptive Filtering Algorithm

In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of its low computational complexity. However, the performance of constrained LMS algorithm will degrade under correlated input or non-Gaussian no...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. II, Express briefs Vol. 68; no. 4; pp. 1507 - 1511
Main Authors Wang, Zhuonan, Zhao, Haiquan, Zeng, Xiangping
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1549-7747
1558-3791
DOI10.1109/TCSII.2020.3022081

Cover

More Information
Summary:In many applications, the constrained adaptive filtering algorithm has been widely studied. The classical constrained LMS algorithm is widely used because of its low computational complexity. However, the performance of constrained LMS algorithm will degrade under correlated input or non-Gaussian noise. In order to overcome this defect, this brief proposes a constrained least mean M-estimation (CLMM) algorithm, which uses the M-estimation cost function for the constrained adaptive filter. Compared with the previous algorithms for non-Gaussian noise, such as constrained maximum correntropy criterion (CMCC) algorithm and constrained minimum error entropy (CMEE) algorithm, the proposed CLMM algorithm has lower computational complexity and better steady-state performance. In addition, the step-size range is determined by analyzing the mean square stability, which ensures the stability of the proposed CLMM algorithm. Simulation results illustrate that the proposed CLMM algorithm has better steady-state performance than previous algorithms in non-Gaussian noises with multi-peak distribution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2020.3022081