Regularized Hierarchical Quadratic Program for Real-Time Whole-Body Motion Generation
The goal of this article is to find an optimal and robust solution for on-line hierarchical least-squares optimization subject to both equality and inequality constraints. We focus on the reasoning about the task regularization to ensure the convergence and robustness of a solution in the face a sin...
Saved in:
| Published in | IEEE/ASME transactions on mechatronics Vol. 26; no. 4; pp. 2115 - 2126 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1083-4435 1941-014X |
| DOI | 10.1109/TMECH.2020.3032522 |
Cover
| Summary: | The goal of this article is to find an optimal and robust solution for on-line hierarchical least-squares optimization subject to both equality and inequality constraints. We focus on the reasoning about the task regularization to ensure the convergence and robustness of a solution in the face a singularity. The mixed problem of a regularization and inequality-constrained hierarchical optimization is not fully discussed due to the mathematical complexity. We address this problem by formulating a regularized hierarchical quadratic programming. The solution is obtained in a unified and computationally efficient manner by leveraging a singular value decomposition and an active set method. At the same time, we concentrate on the realization of the proposed algorithm as a practical means of real-time whole-body motion generation. The effectiveness of the algorithm is validated through extensive numerical simulations and experimental tests of a rescue robot successfully executing manipulation missions in a highly unstructured environment. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1083-4435 1941-014X |
| DOI: | 10.1109/TMECH.2020.3032522 |