Advanced Control Strategies of PMSG-Based Wind Turbines for System Inertia Support

This paper investigates two novel control strategies that enable system inertia supports by permanent magnet synchronous generator (PMSG) wind turbines during transient events. The first strategy seeks to provide inertia support to the system through simultaneous utilization of dc-link capacitor ene...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 32; no. 4; pp. 3027 - 3037
Main Authors Li, Yujun, Xu, Zhao, Wong, Kit Po
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8950
1558-0679
DOI10.1109/TPWRS.2016.2616171

Cover

More Information
Summary:This paper investigates two novel control strategies that enable system inertia supports by permanent magnet synchronous generator (PMSG) wind turbines during transient events. The first strategy seeks to provide inertia support to the system through simultaneous utilization of dc-link capacitor energy, and wind turbine (WT) rotor kinetic energy (KE). The second strategy supports system inertia through orderly exerting dc-link capacitor energy of WT and then WT rotor KE via a cascading control scheme. Both strategies can effectively provide system inertia support by fully utilizing WT's own potentials, while the second strategy distinguishes itself by minimizing its impacts on wind energy harvesting. Case studies of one synchronous generator connected with a PMSG-based WT considering sudden load variations have been studied to validate and compare the two proposed strategies on providing rapid inertia response for the system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2016.2616171