Optimize TSK Fuzzy Systems for Regression Problems: Minibatch Gradient Descent With Regularization, DropRule, and AdaBound (MBGD-RDA)

Takagi-Sugeno-Kang (TSK) fuzzy systems are very useful machine learning models for regression problems. However, to our knowledge, there has not existed an efficient and effective training algorithm that ensures their generalization performance and also enables them to deal with big data. Inspired b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 28; no. 5; pp. 1003 - 1015
Main Authors Wu, Dongrui, Yuan, Ye, Huang, Jian, Tan, Yihua
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2019.2958559

Cover

More Information
Summary:Takagi-Sugeno-Kang (TSK) fuzzy systems are very useful machine learning models for regression problems. However, to our knowledge, there has not existed an efficient and effective training algorithm that ensures their generalization performance and also enables them to deal with big data. Inspired by the connections between TSK fuzzy systems and neural networks, we extend three powerful neural network optimization techniques, i.e., minibatch gradient descent (MBGD), regularization, and AdaBound, to TSK fuzzy systems, and also propose three novel techniques (DropRule, DropMF, and DropMembership) specifically for training TSK fuzzy systems. Our final algorithm, MBGD with regularization, DropRule, and AdaBound, can achieve fast convergence in training TSK fuzzy systems, and also superior generalization performance in testing. It can be used for training TSK fuzzy systems on datasets of any size; however, it is particularly useful for big datasets, on which currently no other efficient training algorithms exist.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2019.2958559