SAMM: A Spontaneous Micro-Facial Movement Dataset

Micro-facial expressions are spontaneous, involuntary movements of the face when a person experiences an emotion but attempts to hide their facial expression, most likely in a high-stakes environment. Recently, research in this field has grown in popularity, however publicly available datasets of mi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 9; no. 1; pp. 116 - 129
Main Authors Davison, Adrian K., Lansley, Cliff, Costen, Nicholas, Tan, Kevin, Moi Hoon Yap
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1949-3045
1949-3045
DOI10.1109/TAFFC.2016.2573832

Cover

More Information
Summary:Micro-facial expressions are spontaneous, involuntary movements of the face when a person experiences an emotion but attempts to hide their facial expression, most likely in a high-stakes environment. Recently, research in this field has grown in popularity, however publicly available datasets of micro-expressions have limitations due to the difficulty of naturally inducing spontaneous micro-expressions. Other issues include lighting, low resolution and low participant diversity. We present a newly developed spontaneous micro-facial movement dataset with diverse participants and coded using the Facial Action Coding System. The experimental protocol addresses the limitations of previous datasets, including eliciting emotional responses from stimuli tailored to each participant. Dataset evaluation was completed by running preliminary experiments to classify micro-movements from non-movements. Results were obtained using a selection of spatio-temporal descriptors and machine learning. We further evaluate the dataset on emerging methods of feature difference analysis and propose an Adaptive Baseline Threshold that uses individualised neutral expression to improve the performance of micro-movement detection. In contrast to machine learning approaches, we outperform the state of the art with a recall of 0.91. The outcomes show the dataset can become a new standard for micro-movement data, with future work expanding on data representation and analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3045
1949-3045
DOI:10.1109/TAFFC.2016.2573832