A Soft Input Decoding Algorithm for Generalized Concatenated Codes

This paper proposes a soft input decoding algorithm and a decoder architecture for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon codes. In order to enable soft input decoding for the inner BCH...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 64; no. 9; pp. 3585 - 3595
Main Authors Spinner, Jens, Freudenberger, Jurgen, Shavgulidze, Sergo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0090-6778
1558-0857
DOI10.1109/TCOMM.2016.2590428

Cover

More Information
Summary:This paper proposes a soft input decoding algorithm and a decoder architecture for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used. Ordinary stack decoding of binary block codes requires the complete trellis of the code. In this paper, a representation of the block codes based on the trellises of supercodes is proposed in order to reduce the memory requirements for the representation of the BCH codes. This enables an efficient hardware implementation. The results for the decoding performance of the overall GC code are presented. Furthermore, a hardware architecture of the GC decoder is proposed. The proposed decoder is well suited for applications that require very low residual error rates.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2016.2590428