Effect of microwave frequency on plasma formation in air breakdown at atmospheric pressure

Microwave breakdown at atmospheric pressure causes the formation of a discrete plasma structure. The onedimensional fluid model coupling Maxwell equations with plasma fluid equations is used to study the effect of the microwave frequency on the formation of air plasma. Simulation results show that,...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 10; pp. 336 - 339
Main Author 赵朋程 郭立新 李慧敏
Format Journal Article
LanguageEnglish
Published 01.10.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/10/105102

Cover

More Information
Summary:Microwave breakdown at atmospheric pressure causes the formation of a discrete plasma structure. The onedimensional fluid model coupling Maxwell equations with plasma fluid equations is used to study the effect of the microwave frequency on the formation of air plasma. Simulation results show that, the filamentary plasma array propagating toward the microwave source is formed at different microwave frequencies. As the microwave frequency decreases, the ratio of the distance between two adjacent plasma filaments to the corresponding wavelength remains almost unchanged(on the order of 1/4), while the plasma front propagates more slowly due to the increase in the formation time of the new plasma filament.
Bibliography:Microwave breakdown at atmospheric pressure causes the formation of a discrete plasma structure. The onedimensional fluid model coupling Maxwell equations with plasma fluid equations is used to study the effect of the microwave frequency on the formation of air plasma. Simulation results show that, the filamentary plasma array propagating toward the microwave source is formed at different microwave frequencies. As the microwave frequency decreases, the ratio of the distance between two adjacent plasma filaments to the corresponding wavelength remains almost unchanged(on the order of 1/4), while the plasma front propagates more slowly due to the increase in the formation time of the new plasma filament.
11-5639/O4
Zhao Peng-Cheng,Guo Li-Xin, Li Hui-Min(School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China)
microwave frequency, plasma formation, air breakdown, electron fluid model
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/10/105102