Reduced-Reference Quality Assessment of Screen Content Images
The screen content images (SCIs) quality influences the user experience and the interactive performance of remote computing systems. With numerous approaches proposed to evaluate the quality of natural images, much less work has been dedicated to reduced-reference image quality assessment (RR-IQA) o...
Saved in:
| Published in | IEEE transactions on circuits and systems for video technology Vol. 28; no. 1; pp. 1 - 14 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1051-8215 1558-2205 |
| DOI | 10.1109/TCSVT.2016.2602764 |
Cover
| Summary: | The screen content images (SCIs) quality influences the user experience and the interactive performance of remote computing systems. With numerous approaches proposed to evaluate the quality of natural images, much less work has been dedicated to reduced-reference image quality assessment (RR-IQA) of SCIs. Here, we propose an RR-IQA method from the perspective of SCI visual perception. In particular, the quality of the distorted SCI is evaluated by comparing a set of extracted statistical features that consider both primary visual information and unpredictable uncertainty. A unique property that differentiates the proposed method from previous RR-IQA methods for natural images is the consideration of behaviors when human subjects view the screen content, which motivates us to establish the perceptual model according to the distinct properties of SCIs. Validations based on the screen content IQA database show that the proposed algorithm provides accurate predictions across a wide range of SCI distortions with negligible transmission overhead. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1051-8215 1558-2205 |
| DOI: | 10.1109/TCSVT.2016.2602764 |