Tracking Analysis of Minimum Kernel Risk-Sensitive Loss Algorithm Under General Non-Gaussian Noise
In this brief, the steady-state tracking performance of minimum kernel risk-sensitive loss in a non-stationary environment is analyzed. In order to model a non-stationary environment, a first-order random-walk model is used to describe the variations of optimum weight vector over time. Moreover, the...
Saved in:
| Published in | IEEE transactions on circuits and systems. II, Express briefs Vol. 66; no. 7; pp. 1262 - 1266 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1549-7747 1558-3791 |
| DOI | 10.1109/TCSII.2018.2874969 |
Cover
| Summary: | In this brief, the steady-state tracking performance of minimum kernel risk-sensitive loss in a non-stationary environment is analyzed. In order to model a non-stationary environment, a first-order random-walk model is used to describe the variations of optimum weight vector over time. Moreover, the measurement noise is considered to have non-Gaussian distribution. The energy conservation relation is utilized to extract an approximate closed-form expression for the steady-state excess mean square error (EMSE). Our analysis shows that unlike for the stationary case, the EMSE curve is not an increasing function of step-size parameter. Hence, the optimum step-size which minimizes the EMSE is derived. We also discuss that our approach can be used to extract steady-state EMSE for a general class of adaptive filters. The simulation results with different noise distributions support the theoretical derivations. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1549-7747 1558-3791 |
| DOI: | 10.1109/TCSII.2018.2874969 |