Rate-Distortion Performance of Lossy Compressed Sensing of Sparse Sources
We investigate lossy compressed sensing (CS) of a hidden, or remote, source, where a sensor observes a sparse information source indirectly. The compressed noisy measurements are communicated to the decoder for signal reconstruction with the aim to minimize the mean square error distortion. An analy...
Saved in:
| Published in | IEEE transactions on communications Vol. 66; no. 10; pp. 4498 - 4512 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0090-6778 1558-0857 |
| DOI | 10.1109/TCOMM.2018.2834349 |
Cover
| Summary: | We investigate lossy compressed sensing (CS) of a hidden, or remote, source, where a sensor observes a sparse information source indirectly. The compressed noisy measurements are communicated to the decoder for signal reconstruction with the aim to minimize the mean square error distortion. An analytically tractable lower bound to the remote rate-distortion function (RDF), i.e., the conditional remote RDF, is derived by providing support side information to the encoder and decoder. For this setup, the best encoder separates into an estimation step and a transmission step. A variant of the Blahut-Arimoto algorithm is developed to numerically approximate the remote RDF. Furthermore, a novel entropy coding based quantized CS method is proposed. Numerical results illustrate the main rate-distortion characteristics of the lossy CS, and compare the performance of practical quantized CS methods against the proposed limits. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0090-6778 1558-0857 |
| DOI: | 10.1109/TCOMM.2018.2834349 |