High-Performance COTS FPGA SoC for Parallel Hyperspectral Image Compression With CCSDS-123.0-B-1

Nowadays, hyperspectral imaging is recognized as a cornerstone remote sensing technology. Next generation, high-speed airborne, and space-borne imagers have increased resolution, resulting in an explosive growth in data volume and instrument data rate in the range of gigapixel per second. This compe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on very large scale integration (VLSI) systems Vol. 28; no. 11; pp. 2397 - 2409
Main Authors Tsigkanos, Antonis, Kranitis, Nektarios, Theodoropoulos, Dimitris, Paschalis, Antonios
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-8210
1557-9999
DOI10.1109/TVLSI.2020.3020164

Cover

More Information
Summary:Nowadays, hyperspectral imaging is recognized as a cornerstone remote sensing technology. Next generation, high-speed airborne, and space-borne imagers have increased resolution, resulting in an explosive growth in data volume and instrument data rate in the range of gigapixel per second. This competes with limited on-board resources and bandwidth, making hyperspectral image compression a mission critical on-board processing task. At the same time, the "new space" trend is emerging, where launch costs decrease, and agile approaches are exploited building smallsats using commercial-off-the-shelf (COTS) parts. In this contribution, we introduce a high-performance parallel implementation of the CCSDS-123.0-B-1 hyperspectral compression algorithm targeting SRAM field-programmable gate array (FPGA) technology. The architecture exploits image segmentation to provide the robustness to data corruption and enables scalable throughput performance by leveraging segment-level parallelism. Furthermore, we exploit the capabilities of a COTS FPGA system-on-chip (SoC) device to optimize size, weight, power, and cost (SWaP-C). The architecture partitions a hyperspectral cube stored in a DRAM framebuffer into segments, compressing them in parallel using a flexible software scheduler hosted in the SoC CPU and several compressor accelerator cores in the FPGA fabric. A 5-core implementation demonstrated on a Zynq-7045 FPGA achieves a throughput performance of 1387 Msamples/s [22.2 Gb/s at 16 bits per pixel per band (bpppb)] and outperforms previous implementations in equivalent FPGA technology, allowing seamless integration with next-generation hyperspectral sensors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2020.3020164