Deep Learning-Based Robust Precoding for Massive MIMO

In this paper, we consider massive multiple-input-multiple-output (MIMO) communication systems with a uniform planar array (UPA) at the base station (BS) and investigate the downlink precoder design with imperfect channel state information (CSI). By exploiting channel estimates and statistical param...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 69; no. 11; pp. 7429 - 7443
Main Authors Shi, Junchao, Wang, Wenjin, Yi, Xinping, Gao, Xiqi, Li, Geoffrey Ye
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0090-6778
1558-0857
DOI10.1109/TCOMM.2021.3105569

Cover

More Information
Summary:In this paper, we consider massive multiple-input-multiple-output (MIMO) communication systems with a uniform planar array (UPA) at the base station (BS) and investigate the downlink precoder design with imperfect channel state information (CSI). By exploiting channel estimates and statistical parameters of channel estimation error, we aim to design precoding vectors to maximize the utility function on the ergodic rates of users subject to a total transmit power constraint. By employing an upper bound of the ergodic rate, we leverage the corresponding Lagrangian formulation and identify the structural characteristics of the optimal precoder as the solution to a generalized eigenvalue problem. The Lagrange multipliers play a crucial role in determining both precoding directions and power parameters, yet are challenging to be solved directly. To figure out the Lagrange multipliers, we develop a general framework underpinned by a properly designed neural network that learns directly from CSI. To further relieve the computational burden, we obtain a low-complexity framework by decomposing the original problem into computationally efficient subproblems with instantaneous and statistical CSI handled separately. With the offline pre-trained neural network, the online computational complexity of precoder is substantially reduced compared with the existing iterative algorithm while maintaining nearly the same performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2021.3105569