An Efficient Construction Strategy for Near-Optimal Variable-Length Error-Correcting Codes
In this letter, we present an efficient cross-entropy (CE)-based algorithm for the design of variable-length error-correcting (VLEC) codes under the joint source and channel coding (JSCC) framework. The algorithm enables us to construct the near-optimal VLEC codes that have the minimum average codew...
Saved in:
| Published in | IEEE communications letters Vol. 23; no. 3; pp. 398 - 401 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1089-7798 1558-2558 |
| DOI | 10.1109/LCOMM.2019.2891623 |
Cover
| Summary: | In this letter, we present an efficient cross-entropy (CE)-based algorithm for the design of variable-length error-correcting (VLEC) codes under the joint source and channel coding (JSCC) framework. The algorithm enables us to construct the near-optimal VLEC codes that have the minimum average codeword length (ACL) with low search complexity. The efficiency of the proposed CE-based algorithm makes it possible to construct the VLEC codes that have small ACL values under various free-distance constraints, especially for large-sized signal alphabets. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1089-7798 1558-2558 |
| DOI: | 10.1109/LCOMM.2019.2891623 |