A fixed point approach to the stability of an AQ-functional equation on β-Banach modules
Using the fixed point method, we prove the Hyers-Ulam stability of the following mixed additive and quadratic functional equation f ( kx + y ) + f ( kx - y ) = f ( x + y ) + f ( x - y ) + ( k - 1) [( k + 2) f ( x ) + kf (- x )] ( k ∈ ℕ, k ≠ 1) in β -Banach modules on a Banach algebra. MR(2000) Subje...
        Saved in:
      
    
          | Published in | Fixed point theory and applications (Hindawi Publishing Corporation) Vol. 2012; no. 1; pp. 1 - 14 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.03.2012
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1687-1812 1687-1820 1687-1812  | 
| DOI | 10.1186/1687-1812-2012-32 | 
Cover
| Abstract | Using the fixed point method, we prove the Hyers-Ulam stability of the following mixed additive and quadratic functional equation
f
(
kx
+
y
) +
f
(
kx
-
y
) =
f
(
x
+
y
) +
f
(
x
-
y
) + (
k
- 1) [(
k
+ 2)
f
(
x
) +
kf
(-
x
)] (
k
∈ ℕ,
k
≠ 1) in
β
-Banach modules on a Banach algebra.
MR(2000) Subject Classification
. 39B82; 39B52; 46H25. | 
    
|---|---|
| AbstractList | Using the fixed point method, we prove the Hyers-Ulam stability of the following mixed additive and quadratic functional equation f (kx + y) + f(kx - y) = f(x + y) + f(x - y) + (k - 1) [(k + 2) f(x) + kf(-x)] (k , k [ne] 1) in beta -Banach modules on a Banach algebra. MR(2000) Subject Classification. 39B82; 39B52; 46H25. Using the fixed point method, we prove the Hyers-Ulam stability of the following mixed additive and quadratic functional equation f ( kx + y ) + f ( kx - y ) = f ( x + y ) + f ( x - y ) + ( k - 1) [( k + 2) f ( x ) + kf (- x )] ( k ∈ ℕ, k ≠ 1) in β -Banach modules on a Banach algebra. MR(2000) Subject Classification . 39B82; 39B52; 46H25.  | 
    
| ArticleNumber | 32 | 
    
| Author | Rassias, John Michael Xu, Tian Zhou  | 
    
| Author_xml | – sequence: 1 givenname: Tian Zhou surname: Xu fullname: Xu, Tian Zhou email: xutianzhou@bit.edu.cn organization: School of Mathematics, Beijing Institute of Technology – sequence: 2 givenname: John Michael surname: Rassias fullname: Rassias, John Michael organization: Pedagogical Department E.E., Section of Mathematics and Informatics, National and Capodistrian University of Athens  | 
    
| BookMark | eNqNkMtKAzEYhYNUsK0-gLss3YzmMtdlLd6gIIIuXIU_MxmbkibTSQbta_kgPpMztoi4EOEn_yHkO-GcCRpZZxVCp5ScU5qnFzTNs4jmlEWM9AdnB2j8fTf6oY_QxPsVIaxISDxGzzNc6zdV4cZpGzA0TeugXOLgcFgq7ANIbXTYYldjsHj2ENWdLYN2FgxWmw4Gifv5eI8uwQ7o2lWdUf4YHdZgvDrZ7yl6ur56nN9Gi_ubu_lsEZWsiEOUQiGrOK4ySjJOJackqSWNiUwqXgCwIk0UZ2nGJIsTRaSMQda8KvKEcUizhE8R2_l2toHtKxgjmlavod0KSsRQjhjCiyG8GMoRnPXQ2Q7q42465YNYa18qY8Aq13lBY15kKc3o4E93T8vWed-q-l_22S-m1OGrqtCCNn-S-zS-_8W-qFasXNf2Zfs_oE9RzJb4 | 
    
| CitedBy_id | crossref_primary_10_1155_2014_914915 | 
    
| Cites_doi | 10.1007/s00010-008-2945-7 10.1007/978-0-387-89492-8 10.1016/j.jmaa.2009.08.021 10.1090/S0002-9904-1968-11933-0 10.1142/4875 10.1007/BF03322841 10.5486/PMD.1996.1559 10.1016/j.na.2009.02.123 10.1155/S016117129100056X 10.1016/j.jmaa.2003.09.032 10.1007/BF02941618 10.1016/j.jmaa.2005.09.027 10.1016/0022-1236(82)90048-9 10.1007/BF02192660 10.1155/S0161171296000324 10.1016/j.jmaa.2011.02.048 10.1016/j.aml.2011.03.002 10.1007/978-1-4419-9637-4 10.1007/BF02924890 10.1017/CBO9781139086578 10.1007/BF01831117 10.1155/2008/672618 10.2969/jmsj/00210064 10.1090/S0002-9939-1978-0507327-1 10.1073/pnas.27.4.222 10.1006/jmaa.1994.1211 10.1007/BF01830975 10.1007/978-1-4612-1790-9 10.1007/s00009-010-0082-8  | 
    
| ContentType | Journal Article | 
    
| Copyright | Xu and Rassias; licensee Springer. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | 
    
| Copyright_xml | – notice: Xu and Rassias; licensee Springer. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | 
    
| DBID | C6C AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1186/1687-1812-2012-32 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 1687-1812 | 
    
| EndPage | 14 | 
    
| ExternalDocumentID | 10.1186/1687-1812-2012-32 10_1186_1687_1812_2012_32  | 
    
| GroupedDBID | -A0 0R~ 29H 2VQ 2WC 3V. 4.4 40G 5GY 5VS 8FE 8FG 8R4 8R5 ABDBF ABJCF ACGFS ACIPV ACIWK ACUHS ADBBV ADINQ AENEX AFKRA AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BPHCQ C24 C6C CS3 DU5 E3Z EBS EJD ESX GROUPED_DOAJ HCIFZ HZ~ I-F IL9 J9A K6V K7- KQ8 L6V M0N M7S O9- OK1 P2P P62 PIMPY PQQKQ PROAC Q2X REM RHU RNS RSV SMT SOJ TUS U2A UPT ~8M AAYXX CITATION OVT 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D -~9 ADTOC AHYZX AMKLP C1A H13 IPNFZ LO0 RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c294t-6a9bd44d710731b3105fb140b5d39aa2965e32672b245e0bb4abf3d98523a6753 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1687-1812 1687-1820  | 
    
| IngestDate | Mon Sep 15 10:18:38 EDT 2025 Fri Jul 11 09:42:10 EDT 2025 Tue Jul 01 01:43:05 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Fri Feb 21 02:36:35 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Banach module fixed point method AQ-functional equation Hyers-Ulam stability generalized metric space unital Banach algebra  | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by/2.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c294t-6a9bd44d710731b3105fb140b5d39aa2965e32672b245e0bb4abf3d98523a6753 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://fixedpointtheoryandalgorithms.springeropen.com/counter/pdf/10.1186/1687-1812-2012-32 | 
    
| PQID | 1439761715 | 
    
| PQPubID | 23500 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | unpaywall_primary_10_1186_1687_1812_2012_32 proquest_miscellaneous_1439761715 crossref_primary_10_1186_1687_1812_2012_32 crossref_citationtrail_10_1186_1687_1812_2012_32 springer_journals_10_1186_1687_1812_2012_32  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20120301 | 
    
| PublicationDateYYYYMMDD | 2012-03-01 | 
    
| PublicationDate_xml | – month: 3 year: 2012 text: 20120301 day: 1  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham | 
    
| PublicationTitle | Fixed point theory and applications (Hindawi Publishing Corporation) | 
    
| PublicationTitleAbbrev | Fixed Point Theory Appl | 
    
| PublicationYear | 2012 | 
    
| Publisher | Springer International Publishing | 
    
| Publisher_xml | – name: Springer International Publishing | 
    
| References | CădariuLRaduVFixed point methods for the generalized stability of functional equations in a single variableFixed Point Theory Appl2008Art ID 749392 KannappanPlQuadratic functional equation and inner product spacesResults Math1995273683720836.39006133111010.1007/BF03322841 KenaryHAJangSYParkCA fixed point approach to the Hyers-Ulam stability of a functional equation in various normed spacesFixed Point Theory Appl2011 HyersDHOn the stability of the linear functional equationProc Nat Acad Sci USA194127222224407610.1073/pnas.27.4.222 RassiasThMOn the stability of the linear mapping in Banach spacesProc Am Math Soc1978722973000398.4704010.1090/S0002-9939-1978-0507327-1 GordjiMEKhodaeiHRassiasThMFixed points and stability for quadratic mappings in β-normed left Banach modules on Banach algebrasResults Math2011 FortiGLHyers-Ulam stability of functional equations in several variablesAequationes Math1995501431900836.39007133686610.1007/BF01831117 Xu TZ, Rassias JM, Xu WX: A fixed point approach to the stability of a general mixed additive-cubic equation on Banach modules. Acta Math Sci Ser B, in press. AokiTOn the stability of the linear transformation in Banach spacesJ Math Soc Japan1950264660040.355014058010.2969/jmsj/00210064 AgarwalRPXuBZhangWStability of functional equations in single variableJ Math Anal Appl20032888528691053.39042202020110.1016/j.jmaa.2003.09.032 EskandaniGZGăvruţaPRassiasJMZarghamiRGeneralized Hyers-Ulam stability for a general mixed functional equation in quasi-β-normed spacesMediterr J Math201183313481236.39026282458510.1007/s00009-010-0082-8 UlamSMA Collection of the Mathematical Problems1960New YorkInterscience ParkCRassiasThMHyers-Ulam stability of a generalized quadratic Apollonius type mappingJ Math Anal Appl20063223713811101.39020223924510.1016/j.jmaa.2005.09.027 JungSMHyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis2011New YorkSpringer10.1007/978-1-4419-9637-4 SkofFLocal properties and approximations of operatorsRend Sem Mat Fis Milano1983531131290599.3900785854110.1007/BF02924890 HyersDHRassiasThMApproximate homomorphismsAequationes Math1992441251530806.47056118126410.1007/BF01830975 RassiasJMOn approximation of approximately linear mappings by linear mappingsJ Funct Anal1982461261300482.4703365446910.1016/0022-1236(82)90048-9 RassiasJMOn approximation of approximately linear mappings by linear mappingsBull des Sci Math19841084454460599.47106 GrabiecAThe generalized Hyers-Ulam stability of a class of functional equationsPubl Math Debrecen1996482172351274.390581394843 XuTZRassiasJMRassiasMJXuWXA fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spacesJ Inequal Appl2010201023Article ID 423231 CădariuLRaduVOn the stability of the Cauchy functional equation: A fixed point approachGrazer Math Ber200434643521060.39028 IsacGRassiasThMStability of ψ-additive mappings: applications to non-linear analysisInt J Math Math Sci1996192192280843.47036137598310.1155/S0161171296000324 GajdaZOn stability of additive mappingsInt J Math Math Sci1991144314340739.39013111003610.1155/S016117129100056X MosznerZOn the stability of functional equationsAequationes Math20097733881207.39044249571810.1007/s00010-008-2945-7 CzerwikSFunctional Equations and Inequalities in Several Variables2002New Jersey, London, Singapore, Hong KongWorld Scientific Publishing Company GăvruţaPA generalization of the Hyers-Ulam-Rassias stability of approximately additive mappingsJ Math Anal Appl19941844314360818.46043128151810.1006/jmaa.1994.1211 Brzd¸ekJOn the quotient stability of a family of functional equationsNonlinear Anal20097143964404254866910.1016/j.na.2009.02.123 AczélJDhombresJFunctional Equations in Several Variables1989CambridgeCambridge Univ. Press10.1017/CBO9781139086578 JungSMHyers-Ulam stability of zeros of polynomialsAppl Math Lett201124132213251217.26023279362510.1016/j.aml.2011.03.002 CholewaPWRemarks on the stability of functional equationsAequationes Math19842776860549.3900675886010.1007/BF02192660 SaadatiRVaezpourSMParkCThe stability of the cubic functional equation in various spacesMath Commun2011161311451225.390292835961 CzerwikSOn the stability of the quadratic mapping in normed spacesAbh Math Sem Univ Hamburg19926259640779.39003118284110.1007/BF02941618 GordjiMEKhodaeiHNajatiAFixed points and quartic functional equations in β-Banach modulesResults Math2011 CieplińskiKStability of the multi-Jensen equationJ Math Anal Appl20103632492541211.39017255906010.1016/j.jmaa.2009.08.021 BrzdękJOn approximately additive functionsJ Math Anal Appl20113812993071235.39017279621010.1016/j.jmaa.2011.02.048 RaduVThe fixed point alternative and the stability of functional equationsFixed Point Theory2003491961051.390312031824 MoradlouFVaeziHParkCFixed points and stability of an additive functional equation of n-Apollonius type in C*-algebrasAbstract Appl Anal2008200813243925510.1155/2008/672618Article ID 672618 BalachandranVKTopological Algebras1999New DelhiNarosa Publishing House KannappanPlFunctional Equations and Inequalities with Applications2009New YorkSpringer10.1007/978-0-387-89492-8 HyersDHIsacGRassiasThMStability of Functional Equations in Several Variables1998Boston, Basel, BerlinBirkhauser10.1007/978-1-4612-1790-9 DiazJBMargolisBA fixed point theorem of the alternative for the contractions on generalized complete metric spaceBull Am Math Soc1968743053090157.2990422026710.1090/S0002-9904-1968-11933-0 J Brzd¸ek (147_CR23) 2009; 71 SM Jung (147_CR28) 2011 SM Ulam (147_CR1) 1960 TZ Xu (147_CR20) 2010; 2010 VK Balachandran (147_CR39) 1999 L Cădariu (147_CR10) 2004; 346 HA Kenary (147_CR30) 2011 RP Agarwal (147_CR9) 2003; 288 A Grabiec (147_CR37) 1996; 48 Z Gajda (147_CR41) 1991; 14 147_CR21 Pl Kannappan (147_CR29) 2009 P Găvruţa (147_CR5) 1994; 184 Z Moszner (147_CR17) 2009; 77 PW Cholewa (147_CR36) 1984; 27 F Moradlou (147_CR16) 2008; 2008 DH Hyers (147_CR2) 1941; 27 R Saadati (147_CR32) 2011; 16 F Skof (147_CR35) 1983; 53 SM Jung (147_CR27) 2011; 24 T Aoki (147_CR3) 1950; 2 Pl Kannappan (147_CR15) 1995; 27 ThM Rassias (147_CR4) 1978; 72 DH Hyers (147_CR24) 1998 JB Diaz (147_CR40) 1968; 74 JM Rassias (147_CR7) 1984; 108 GL Forti (147_CR14) 1995; 50 K Ciepliński (147_CR31) 2010; 363 ME Gordji (147_CR12) 2011 GZ Eskandani (147_CR11) 2011; 8 J Brzdęk (147_CR22) 2011; 381 V Radu (147_CR19) 2003; 4 L Cădariu (147_CR33) 2008 DH Hyers (147_CR25) 1992; 44 JM Rassias (147_CR6) 1982; 46 J Aczél (147_CR8) 1989 G Isac (147_CR26) 1996; 19 S Czerwik (147_CR38) 2002 ME Gordji (147_CR13) 2011 C Park (147_CR18) 2006; 322 S Czerwik (147_CR34) 1992; 62  | 
    
| References_xml | – reference: GajdaZOn stability of additive mappingsInt J Math Math Sci1991144314340739.39013111003610.1155/S016117129100056X – reference: HyersDHOn the stability of the linear functional equationProc Nat Acad Sci USA194127222224407610.1073/pnas.27.4.222 – reference: FortiGLHyers-Ulam stability of functional equations in several variablesAequationes Math1995501431900836.39007133686610.1007/BF01831117 – reference: JungSMHyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis2011New YorkSpringer10.1007/978-1-4419-9637-4 – reference: SaadatiRVaezpourSMParkCThe stability of the cubic functional equation in various spacesMath Commun2011161311451225.390292835961 – reference: CzerwikSOn the stability of the quadratic mapping in normed spacesAbh Math Sem Univ Hamburg19926259640779.39003118284110.1007/BF02941618 – reference: CădariuLRaduVOn the stability of the Cauchy functional equation: A fixed point approachGrazer Math Ber200434643521060.39028 – reference: KannappanPlQuadratic functional equation and inner product spacesResults Math1995273683720836.39006133111010.1007/BF03322841 – reference: HyersDHIsacGRassiasThMStability of Functional Equations in Several Variables1998Boston, Basel, BerlinBirkhauser10.1007/978-1-4612-1790-9 – reference: GordjiMEKhodaeiHRassiasThMFixed points and stability for quadratic mappings in β-normed left Banach modules on Banach algebrasResults Math2011 – reference: RassiasJMOn approximation of approximately linear mappings by linear mappingsJ Funct Anal1982461261300482.4703365446910.1016/0022-1236(82)90048-9 – reference: JungSMHyers-Ulam stability of zeros of polynomialsAppl Math Lett201124132213251217.26023279362510.1016/j.aml.2011.03.002 – reference: AgarwalRPXuBZhangWStability of functional equations in single variableJ Math Anal Appl20032888528691053.39042202020110.1016/j.jmaa.2003.09.032 – reference: RaduVThe fixed point alternative and the stability of functional equationsFixed Point Theory2003491961051.390312031824 – reference: GăvruţaPA generalization of the Hyers-Ulam-Rassias stability of approximately additive mappingsJ Math Anal Appl19941844314360818.46043128151810.1006/jmaa.1994.1211 – reference: Brzd¸ekJOn the quotient stability of a family of functional equationsNonlinear Anal20097143964404254866910.1016/j.na.2009.02.123 – reference: RassiasJMOn approximation of approximately linear mappings by linear mappingsBull des Sci Math19841084454460599.47106 – reference: DiazJBMargolisBA fixed point theorem of the alternative for the contractions on generalized complete metric spaceBull Am Math Soc1968743053090157.2990422026710.1090/S0002-9904-1968-11933-0 – reference: XuTZRassiasJMRassiasMJXuWXA fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spacesJ Inequal Appl2010201023Article ID 423231 – reference: BrzdękJOn approximately additive functionsJ Math Anal Appl20113812993071235.39017279621010.1016/j.jmaa.2011.02.048 – reference: CădariuLRaduVFixed point methods for the generalized stability of functional equations in a single variableFixed Point Theory Appl2008Art ID 749392 – reference: EskandaniGZGăvruţaPRassiasJMZarghamiRGeneralized Hyers-Ulam stability for a general mixed functional equation in quasi-β-normed spacesMediterr J Math201183313481236.39026282458510.1007/s00009-010-0082-8 – reference: KenaryHAJangSYParkCA fixed point approach to the Hyers-Ulam stability of a functional equation in various normed spacesFixed Point Theory Appl2011 – reference: CzerwikSFunctional Equations and Inequalities in Several Variables2002New Jersey, London, Singapore, Hong KongWorld Scientific Publishing Company – reference: AokiTOn the stability of the linear transformation in Banach spacesJ Math Soc Japan1950264660040.355014058010.2969/jmsj/00210064 – reference: Xu TZ, Rassias JM, Xu WX: A fixed point approach to the stability of a general mixed additive-cubic equation on Banach modules. Acta Math Sci Ser B, in press. – reference: GrabiecAThe generalized Hyers-Ulam stability of a class of functional equationsPubl Math Debrecen1996482172351274.390581394843 – reference: AczélJDhombresJFunctional Equations in Several Variables1989CambridgeCambridge Univ. Press10.1017/CBO9781139086578 – reference: CieplińskiKStability of the multi-Jensen equationJ Math Anal Appl20103632492541211.39017255906010.1016/j.jmaa.2009.08.021 – reference: SkofFLocal properties and approximations of operatorsRend Sem Mat Fis Milano1983531131290599.3900785854110.1007/BF02924890 – reference: RassiasThMOn the stability of the linear mapping in Banach spacesProc Am Math Soc1978722973000398.4704010.1090/S0002-9939-1978-0507327-1 – reference: ParkCRassiasThMHyers-Ulam stability of a generalized quadratic Apollonius type mappingJ Math Anal Appl20063223713811101.39020223924510.1016/j.jmaa.2005.09.027 – reference: UlamSMA Collection of the Mathematical Problems1960New YorkInterscience – reference: HyersDHRassiasThMApproximate homomorphismsAequationes Math1992441251530806.47056118126410.1007/BF01830975 – reference: KannappanPlFunctional Equations and Inequalities with Applications2009New YorkSpringer10.1007/978-0-387-89492-8 – reference: CholewaPWRemarks on the stability of functional equationsAequationes Math19842776860549.3900675886010.1007/BF02192660 – reference: MosznerZOn the stability of functional equationsAequationes Math20097733881207.39044249571810.1007/s00010-008-2945-7 – reference: BalachandranVKTopological Algebras1999New DelhiNarosa Publishing House – reference: GordjiMEKhodaeiHNajatiAFixed points and quartic functional equations in β-Banach modulesResults Math2011 – reference: MoradlouFVaeziHParkCFixed points and stability of an additive functional equation of n-Apollonius type in C*-algebrasAbstract Appl Anal2008200813243925510.1155/2008/672618Article ID 672618 – reference: IsacGRassiasThMStability of ψ-additive mappings: applications to non-linear analysisInt J Math Math Sci1996192192280843.47036137598310.1155/S0161171296000324 – volume: 77 start-page: 33 year: 2009 ident: 147_CR17 publication-title: Aequationes Math doi: 10.1007/s00010-008-2945-7 – volume-title: Functional Equations and Inequalities with Applications year: 2009 ident: 147_CR29 doi: 10.1007/978-0-387-89492-8 – volume: 363 start-page: 249 year: 2010 ident: 147_CR31 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2009.08.021 – volume: 74 start-page: 305 year: 1968 ident: 147_CR40 publication-title: Bull Am Math Soc doi: 10.1090/S0002-9904-1968-11933-0 – volume-title: Functional Equations and Inequalities in Several Variables year: 2002 ident: 147_CR38 doi: 10.1142/4875 – volume: 27 start-page: 368 year: 1995 ident: 147_CR15 publication-title: Results Math doi: 10.1007/BF03322841 – volume: 48 start-page: 217 year: 1996 ident: 147_CR37 publication-title: Publ Math Debrecen doi: 10.5486/PMD.1996.1559 – volume-title: Topological Algebras year: 1999 ident: 147_CR39 – volume-title: A Collection of the Mathematical Problems year: 1960 ident: 147_CR1 – volume: 71 start-page: 4396 year: 2009 ident: 147_CR23 publication-title: Nonlinear Anal doi: 10.1016/j.na.2009.02.123 – volume: 14 start-page: 431 year: 1991 ident: 147_CR41 publication-title: Int J Math Math Sci doi: 10.1155/S016117129100056X – volume: 288 start-page: 852 year: 2003 ident: 147_CR9 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2003.09.032 – volume: 16 start-page: 131 year: 2011 ident: 147_CR32 publication-title: Math Commun – volume-title: Fixed Point Theory Appl year: 2008 ident: 147_CR33 – volume: 62 start-page: 59 year: 1992 ident: 147_CR34 publication-title: Abh Math Sem Univ Hamburg doi: 10.1007/BF02941618 – volume: 322 start-page: 371 year: 2006 ident: 147_CR18 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2005.09.027 – volume: 46 start-page: 126 year: 1982 ident: 147_CR6 publication-title: J Funct Anal doi: 10.1016/0022-1236(82)90048-9 – volume: 27 start-page: 76 year: 1984 ident: 147_CR36 publication-title: Aequationes Math doi: 10.1007/BF02192660 – volume: 346 start-page: 43 year: 2004 ident: 147_CR10 publication-title: Grazer Math Ber – volume: 19 start-page: 219 year: 1996 ident: 147_CR26 publication-title: Int J Math Math Sci doi: 10.1155/S0161171296000324 – volume: 381 start-page: 299 year: 2011 ident: 147_CR22 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2011.02.048 – volume: 24 start-page: 1322 year: 2011 ident: 147_CR27 publication-title: Appl Math Lett doi: 10.1016/j.aml.2011.03.002 – volume-title: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis year: 2011 ident: 147_CR28 doi: 10.1007/978-1-4419-9637-4 – volume-title: Results Math year: 2011 ident: 147_CR13 – volume: 53 start-page: 113 year: 1983 ident: 147_CR35 publication-title: Rend Sem Mat Fis Milano doi: 10.1007/BF02924890 – volume-title: Functional Equations in Several Variables year: 1989 ident: 147_CR8 doi: 10.1017/CBO9781139086578 – volume: 2010 start-page: 23 year: 2010 ident: 147_CR20 publication-title: J Inequal Appl – volume-title: Results Math year: 2011 ident: 147_CR12 – volume: 50 start-page: 143 year: 1995 ident: 147_CR14 publication-title: Aequationes Math doi: 10.1007/BF01831117 – volume: 2008 start-page: 13 year: 2008 ident: 147_CR16 publication-title: Abstract Appl Anal doi: 10.1155/2008/672618 – volume: 2 start-page: 64 year: 1950 ident: 147_CR3 publication-title: J Math Soc Japan doi: 10.2969/jmsj/00210064 – volume: 4 start-page: 91 year: 2003 ident: 147_CR19 publication-title: Fixed Point Theory – volume: 72 start-page: 297 year: 1978 ident: 147_CR4 publication-title: Proc Am Math Soc doi: 10.1090/S0002-9939-1978-0507327-1 – ident: 147_CR21 – volume: 27 start-page: 222 year: 1941 ident: 147_CR2 publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.27.4.222 – volume-title: Fixed Point Theory Appl year: 2011 ident: 147_CR30 – volume: 184 start-page: 431 year: 1994 ident: 147_CR5 publication-title: J Math Anal Appl doi: 10.1006/jmaa.1994.1211 – volume: 44 start-page: 125 year: 1992 ident: 147_CR25 publication-title: Aequationes Math doi: 10.1007/BF01830975 – volume: 108 start-page: 445 year: 1984 ident: 147_CR7 publication-title: Bull des Sci Math – volume-title: Stability of Functional Equations in Several Variables year: 1998 ident: 147_CR24 doi: 10.1007/978-1-4612-1790-9 – volume: 8 start-page: 331 year: 2011 ident: 147_CR11 publication-title: Mediterr J Math doi: 10.1007/s00009-010-0082-8  | 
    
| SSID | ssj0029504 | 
    
| Score | 1.9234095 | 
    
| Snippet | Using the fixed point method, we prove the Hyers-Ulam stability of the following mixed additive and quadratic functional equation
f
(
kx
+
y
) +
f
(
kx
-
y
) =... Using the fixed point method, we prove the Hyers-Ulam stability of the following mixed additive and quadratic functional equation f (kx + y) + f(kx - y) = f(x...  | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Additives Algebra Analysis Applications of Mathematics Classification Differential Geometry Fixed points (mathematics) Mathematical analysis Mathematical and Computational Biology Mathematics Mathematics and Statistics Modules Stability Topology  | 
    
| SummonAdditionalLinks | – databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 dbid: 40G link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yH3QP4hXnjQg-OYq9JGnzOMU5hAmCg_lUkjaFQW2nbdH9LX-Iv8mT3lSQidDHnhTOOcn3nZz0C0JnLsCMUhYzPMu19G6VMKRg0hA0oER6nJBQb-iP79hoQm6ndFr_x501p92blmS5UpfT2mMXFoPpoPEIAquF9mDdXaUWABwkMTFv2iqLU5PU7ctfzX4C0BerbBuhXbRWJHOxeBVx_A1rhptooyaJeFBFdQutqGQbdcetwmq2gx4HOJq9qRDP01mS40YaHOcphrcwcL7y1OsCpxEWCR7cGxrBqo0_rJ4rgW8Mz8e7cSkSbfqUhkWssl00GV4_XI2M-poEI7A5yQ0muAzBp8AVXMeSwNdoJKFukjR0uBA2Z1QBSXNtaROqTCmJkJETcg9qUAH1grOHOkmaqH2ECXVV6JocUDskEFvpER5JV0QmC7SgcQ-Zje_8oNYQ11dZxH5ZS3jM1-72tbt97W7fAZPz1mReCWgse_m0CYgPaa57FyJRaZFBhaKJE-QT7aF-Eym_nm_ZshH7bTD__v7Bv8Y-ROtlTpUn0o5QJ38p1DFQlFyelCn5CUNB2nQ priority: 102 providerName: Springer Nature  | 
    
| Title | A fixed point approach to the stability of an AQ-functional equation on β-Banach modules | 
    
| URI | https://link.springer.com/article/10.1186/1687-1812-2012-32 https://www.proquest.com/docview/1439761715 https://fixedpointtheoryandalgorithms.springeropen.com/counter/pdf/10.1186/1687-1812-2012-32  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2012 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-1812 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029504 issn: 1687-1820 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-1812 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029504 issn: 1687-1820 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1687-1812 dateEnd: 20201231 omitProxy: true ssIdentifier: ssj0029504 issn: 1687-1820 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-1812 dateEnd: 20201208 omitProxy: true ssIdentifier: ssj0029504 issn: 1687-1820 databaseCode: ABDBF dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-1812 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029504 issn: 1687-1820 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 customDbUrl: eissn: 1687-1812 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029504 issn: 1687-1820 databaseCode: 40G dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1687-1812 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029504 issn: 1687-1820 databaseCode: U2A dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEB_OvQe9B7_F8-OI4JNH9_qRpO3jurgewh0KLtyBUJImPQ977Xpt0RX8p_xD_JucaTd7KnLig1BCHyYJSWYyv5kkMwBPY1Qz1gbSS4I4IG-V8rSS2lMiF1wnKeeGHPoHh3J_zl8diaMNeOfewhSnn61Z1KdV2z_kW5I5XZ7UaCi_P2vG7qySMksNDx4ooYI931uYYpD_RO4FEuWGFBdyAEXkww16UwpE6iPYnB--nhyTDeZoLv5Dd-j5xzZ-VVsXWHR9fLoFV7tqoZafVFn-pKFmN-CrG9twMeXDuGv1OP_yW9jH_zX4m3B9BW3ZZODFW7Bhq9uwdbCOC9vcgeMJ63tnfffMBTRnbc2QiiFS7e_qLlldMFWxyRuP9O7grmT24xCWnOH3_Zv3XFVU9aw2XWmbuzCfvXg73fdWyR28PEx560mVaoOcgAgnjgKNKFMUGq09LUyUKhWmUliElnGoQy6srzVXuohMmqDlrNDKie7BqKorex8YF7E1sZ8i1jAcOVInPC10rApf5hSGeRt8t3ZZvop8Tgk4yqy3gBKZ0axlNGsZzVoWYZVn6yqLIezHZcRPHENkKJx04qIqW3cN2lUE91AKxDbsuvXLVrtEc1mLu2tm-nv_D_6J-iFc61mjv0f3CEbteWcfI7Bq9Q5c4f5LLJMZlVM53eldFFjOQywH6fkBozYe_Q | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yH-YexCvOawSfHMV2TdLmcQ5l6jYQNphPIVlTGNR2ug7d3_KH-Js86bo6QSZCH3NSOJee75yTfkHowoM0o7XDLN_xHNOtkpaSTFmSDilRPickMA39Tpe1-uR-QAc5WbT5F2Z5fu_47MphEAQmC4E5Db0efG3XieP7JgabrFnUVpzaJB9a_ir2M-18Y8li_FlB5Wk8lrM3GUVLGeZ2C23m0BA35rbcRms63kGVTsGrOtlFTw0cjt51gMfJKE7xghAcpwmGVRiQXnbWdYaTEMsYNx4tk7fm7T6sX-a03hiezw_rWsZG9DkJppGe7KH-7U2v2bLyyxGsYZ2T1GKSqwA0CQjBcx0FKI2GCqolRQOXS1nnjGqAZl5d1QnVtlJEqtANuA-Vp4Qqwd1HpTiJ9QHChHo68GwOuTogYFHlEx4qT4Y2Gxoa4yqyF7oTw5w53FxgEYmsgvCZMOoWRt3CqFu4IHJZiIzntBmrFp8vDCLAuc3EQsY6mU6gLjFwCbyIVlFtYSmRR9lk1Y61wph_v__wX3ufoXKr12mL9l334QhtZP6VnUk7RqX0dapPAKSk6jRzzy_KTtl0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6i4PEgnngbwSel2G6TtHlcj_UWBQV9CskmBWFNV9tF_Vv-EH-Tk14qiCL0MZPCzKTzTWb6DUKbEYQZYwLmxUEUuNsq6SnJlCdplxIVc0K0u9A_v2BHN-Tklt5Wc06zutu9LkmW_zQ4liab7_R1Uh7xmO0EDI6Gi01gZEe6B9_gEeKG04FDE_-wybg49UlVyvxR7Hsw-kSYTVF0Ao0NbF--Pste70vc6UyhyQow4nZp4Wk0ZOwMmjhv2FazWXTXxsn9i9G4n97bHNc04ThPMazCgP-KDthXnCZYWty-8lw0Ky8BsXksyb4xPO9v3q60TvQh1YOeyebQTefgeu_Iq0YmeN0WJ7nHJFca9Au4IQoDBdiNJgpyKEV1yKVscUYNALaopVqEGl8pIlUSah5DPiohdwjn0bBNrVlAmNDI6MjnEME1ATurmPBERTLxWdeRGy8iv9ad6FZ84m6sRU8UeUXMhFO3cOoWTt0iBJGtRqRfkmn8tnijNogAl3d1DGlNOsggW3EgCnyLLqLt2lKiOnvZbztuN8b8-_1L_9p7HY1e7nfE2fHF6TIaL9yraFRbQcP508CsAnLJ1VrhnR-yV-Gf | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7C5tDm0DZ90PQRVOipwZu1Lcn2cVsSQiChhS4kUDCSJSchjr2Nbdot9E_1h-Q3Zca2Nm0pKT0UfPBBDyTNaL7RSN8AvI7QzFjrSy_2I59Oq5SnldSeEpngOk44N3Sgf3Ao92Z8_0gcrcAn9xYmP_tqzbw6K5vuId-C3OnipEJH-fSiHrtYJWWW6h88UEIFe7k9N3mv_7Hc9iXqDRkulABi5MMNelUKROojWJ0dvp8ekw_mytz8By7o-cc2fjVbN1h0GT5dgzttOVeLL6oofrJQu_fhuxtbfzHlfNw2epx9-4328X8N_gHcG6Atm_ayuA4rtnwIawdLXtj6ERxPWdc767pnjtCcNRXDUgyRandXd8GqnKmSTT94ZHf740pmP_e05Ay_qx_eW1VS1YvKtIWtH8Nsd-fjuz1vSO7gZUHCG0-qRBuUBEQ4UehrRJki1-jtaWHCRKkgkcIitIwCHXBhJ1pzpfPQJDF6zgq9nPAJjMqqtE-BcRFZE00SxBqGo0TqmCe5jlQ-kRnRMG_AxK1dmg3M55SAo0g7DyiWKc1aSrOW0qylIVZ5s6wy72k_biv8yglEispJERdV2qqt0a8iuIdaIDZgy61fOuwS9W0tbi2F6e_9P_un0s_hbica3T26FzBqLlv7EoFVozcH_bgGVrYakA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fixed+point+approach+to+the+stability+of+an+AQ-functional+equation+on+beta+-Banach+modules&rft.jtitle=Fixed+point+theory+and+applications+%28Hindawi+Publishing+Corporation%29&rft.au=Xu%2C+Tian+Zhou&rft.au=Rassias%2C+John+Michael&rft.date=2012-03-01&rft.issn=1687-1820&rft.eissn=1687-1812&rft.volume=2012&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1186%2F1687-1812-2012-32&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1812&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1812&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1812&client=summon |