A fixed point approach to the stability of an AQ-functional equation on β-Banach modules

Using the fixed point method, we prove the Hyers-Ulam stability of the following mixed additive and quadratic functional equation f ( kx + y ) + f ( kx - y ) = f ( x + y ) + f ( x - y ) + ( k - 1) [( k + 2) f ( x ) + kf (- x )] ( k ∈ ℕ, k ≠ 1) in β -Banach modules on a Banach algebra. MR(2000) Subje...

Full description

Saved in:
Bibliographic Details
Published inFixed point theory and applications (Hindawi Publishing Corporation) Vol. 2012; no. 1; pp. 1 - 14
Main Authors Xu, Tian Zhou, Rassias, John Michael
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2012
Subjects
Online AccessGet full text
ISSN1687-1812
1687-1820
1687-1812
DOI10.1186/1687-1812-2012-32

Cover

More Information
Summary:Using the fixed point method, we prove the Hyers-Ulam stability of the following mixed additive and quadratic functional equation f ( kx + y ) + f ( kx - y ) = f ( x + y ) + f ( x - y ) + ( k - 1) [( k + 2) f ( x ) + kf (- x )] ( k ∈ ℕ, k ≠ 1) in β -Banach modules on a Banach algebra. MR(2000) Subject Classification . 39B82; 39B52; 46H25.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1687-1812
1687-1820
1687-1812
DOI:10.1186/1687-1812-2012-32