A fixed point approach to the stability of an AQ-functional equation on β-Banach modules
Using the fixed point method, we prove the Hyers-Ulam stability of the following mixed additive and quadratic functional equation f ( kx + y ) + f ( kx - y ) = f ( x + y ) + f ( x - y ) + ( k - 1) [( k + 2) f ( x ) + kf (- x )] ( k ∈ ℕ, k ≠ 1) in β -Banach modules on a Banach algebra. MR(2000) Subje...
Saved in:
Published in | Fixed point theory and applications (Hindawi Publishing Corporation) Vol. 2012; no. 1; pp. 1 - 14 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1687-1812 1687-1820 1687-1812 |
DOI | 10.1186/1687-1812-2012-32 |
Cover
Summary: | Using the fixed point method, we prove the Hyers-Ulam stability of the following mixed additive and quadratic functional equation
f
(
kx
+
y
) +
f
(
kx
-
y
) =
f
(
x
+
y
) +
f
(
x
-
y
) + (
k
- 1) [(
k
+ 2)
f
(
x
) +
kf
(-
x
)] (
k
∈ ℕ,
k
≠ 1) in
β
-Banach modules on a Banach algebra.
MR(2000) Subject Classification
. 39B82; 39B52; 46H25. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1687-1812 1687-1820 1687-1812 |
DOI: | 10.1186/1687-1812-2012-32 |