Multiple Hungarian Method for k-Assignment Problem

The k-assignment problem (or, the k-matching problem) on k-partite graphs is an NP-hard problem for k≥3. In this paper we introduce five new heuristics. Two algorithms, Bm and Cm, arise as natural improvements of Algorithm Am from (He et al., in: Graph Algorithms And Applications 2, World Scientific...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 8; no. 11; p. 2050
Main Authors Gabrovšek, Boštjan, Novak, Tina, Povh, Janez, Rupnik Poklukar, Darja, Žerovnik, Janez
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2020
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math8112050

Cover

More Information
Summary:The k-assignment problem (or, the k-matching problem) on k-partite graphs is an NP-hard problem for k≥3. In this paper we introduce five new heuristics. Two algorithms, Bm and Cm, arise as natural improvements of Algorithm Am from (He et al., in: Graph Algorithms And Applications 2, World Scientific, 2004). The other three algorithms, Dm, Em, and Fm, incorporate randomization. Algorithm Dm can be considered as a greedy version of Bm, whereas Em and Fm are versions of local search algorithm, specialized for the k-matching problem. The algorithms are implemented in Python and are run on three datasets. On the datasets available, all the algorithms clearly outperform Algorithm Am in terms of solution quality. On the first dataset with known optimal values the average relative error ranges from 1.47% over optimum (algorithm Am) to 0.08% over optimum (algorithm Em). On the second dataset with known optimal values the average relative error ranges from 4.41% over optimum (algorithm Am) to 0.45% over optimum (algorithm Fm). Better quality of solutions demands higher computation times, thus the new algorithms provide a good compromise between quality of solutions and computation time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math8112050