Visual pattern recognition by moment invariants

In this paper a theory of two-dimensional moment invariants for planar geometric figures is presented. A fundamental theorem is established to relate such moment invariants to the well-known algebraic invariants. Complete systems of moment invariants under translation, similitude and orthogonal tran...

Full description

Saved in:
Bibliographic Details
Published inI.R.E. transactions on information theory Vol. 8; no. 2; pp. 179 - 187
Main Author Ming-Kuei Hu
Format Journal Article
LanguageEnglish
Published The Institute of Radio Engineers, Inc 01.02.1962
Subjects
Online AccessGet full text
ISSN0096-1000
DOI10.1109/TIT.1962.1057692

Cover

More Information
Summary:In this paper a theory of two-dimensional moment invariants for planar geometric figures is presented. A fundamental theorem is established to relate such moment invariants to the well-known algebraic invariants. Complete systems of moment invariants under translation, similitude and orthogonal transformations are derived. Some moment invariants under general two-dimensional linear transformations are also included. Both theoretical formulation and practical models of visual pattern recognition based upon these moment invariants are discussed. A simple simulation program together with its performance are also presented. It is shown that recognition of geometrical patterns and alphabetical characters independently of position, size and orientation can be accomplished. It is also indicated that generalization is possible to include invariance with parallel projection.
ISSN:0096-1000
DOI:10.1109/TIT.1962.1057692