Threshold-Free Phase Segmentation and Zero Velocity Detection for Gait Analysis Using Foot-Mounted Inertial Sensors

Gait analysis is a prosperous tool for the clinical evaluation and diagnosis. In this article, a portable gait analysis system based on foot-mounted inertial sensors is established. A threshold-free method using a long short-term memory recurrent neural network is constructed to segment four typical...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 53; no. 1; pp. 1 - 11
Main Authors Shi, Xin, Wang, Zhelong, Zhao, Hongyu, Qiu, Sen, Liu, Ruichen, Lin, Fang, Tang, Kai
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2291
2168-2305
DOI10.1109/THMS.2022.3228515

Cover

Abstract Gait analysis is a prosperous tool for the clinical evaluation and diagnosis. In this article, a portable gait analysis system based on foot-mounted inertial sensors is established. A threshold-free method using a long short-term memory recurrent neural network is constructed to segment four typical gait phases in a gait sequence for the temporal parameters analysis. Segmentation accuracy reaches over 95% across recruited subjects with distinct gait patterns, which is significantly superior when compared with traditional machine learning methods. The zero-velocity indicator is generated successively according to the segmented sequence to accomplish zero velocity update for the spatial parameter calculation. The accuracy of the proposed system is also validated through the OptiTrack in the lab. The comparison result of the stride length shows that the error between the two systems is less than 2%, which demonstrates that our system can satisfy the demand in the clinical.
AbstractList Gait analysis is a prosperous tool for the clinical evaluation and diagnosis. In this article, a portable gait analysis system based on foot-mounted inertial sensors is established. A threshold-free method using a long short-term memory recurrent neural network is constructed to segment four typical gait phases in a gait sequence for the temporal parameters analysis. Segmentation accuracy reaches over 95% across recruited subjects with distinct gait patterns, which is significantly superior when compared with traditional machine learning methods. The zero-velocity indicator is generated successively according to the segmented sequence to accomplish zero velocity update for the spatial parameter calculation. The accuracy of the proposed system is also validated through the OptiTrack in the lab. The comparison result of the stride length shows that the error between the two systems is less than 2%, which demonstrates that our system can satisfy the demand in the clinical.
Author Shi, Xin
Wang, Zhelong
Liu, Ruichen
Zhao, Hongyu
Lin, Fang
Qiu, Sen
Tang, Kai
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0001-9795-2160
  surname: Shi
  fullname: Shi, Xin
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 2
  givenname: Zhelong
  orcidid: 0000-0003-4959-3372
  surname: Wang
  fullname: Wang, Zhelong
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 3
  givenname: Hongyu
  orcidid: 0000-0003-1510-5289
  surname: Zhao
  fullname: Zhao, Hongyu
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 4
  givenname: Sen
  orcidid: 0000-0001-6846-546X
  surname: Qiu
  fullname: Qiu, Sen
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 5
  givenname: Ruichen
  orcidid: 0000-0002-1631-9652
  surname: Liu
  fullname: Liu, Ruichen
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 6
  givenname: Fang
  surname: Lin
  fullname: Lin, Fang
  organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education and the School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 7
  givenname: Kai
  surname: Tang
  fullname: Tang, Kai
  organization: First Affiliated Hospital of Dalian Medical University, Dalian, China
BookMark eNp9UE1PAjEQbYwmIvIDjJcmnhe3LbvbHgnKRwLRBPDgZdPdnYWSpcW2HPj3lg89eHDmMDOZ915m3h261kYDQg8k7hISi-fFeDbv0pjSLqOUJyS5Qi1KUh5RFifXPz0V5BZ1nNvEIThNkoS3kFusLbi1aapoaAHw-1o6wHNYbUF76ZXRWOoKf4I1-AMaUyp_wC_goTztamPxSCqP-1o2B6ccXjqlV3hojI9mZq89VHiiwXolmyCrnbHuHt3UsnHQudQ2Wg5fF4NxNH0bTQb9aVRSwXwEBZCsikUpszIpREhOC1qwug5TVYo0raGUogBZMOiRXlVXLOYp4ZykUNSCtdHTWXdnzdcenM83Zm_DoS6nWZqQrEd5FlDZGVVa45yFOg8_nj73VqomJ3F-NDk_mpwfTc4vJgcm-cPcWbWV9vAv5_HMUQDwixdCEJ6m7BvEwov0
CODEN ITHSA6
CitedBy_id crossref_primary_10_1186_s40359_024_01743_4
crossref_primary_10_3390_su152014977
crossref_primary_10_1109_ACCESS_2023_3336419
crossref_primary_10_1109_ACCESS_2025_3544758
crossref_primary_10_4018_IJITSA_320489
crossref_primary_10_7717_peerj_cs_1869
crossref_primary_10_1016_j_heliyon_2024_e26474
crossref_primary_10_7717_peerj_cs_1799
crossref_primary_10_7717_peerj_cs_2547
crossref_primary_10_7717_peerj_cs_1679
crossref_primary_10_3390_s24030838
crossref_primary_10_1109_JBHI_2024_3380099
crossref_primary_10_1049_2023_5566781
crossref_primary_10_1016_j_inffus_2024_102504
crossref_primary_10_1007_s13132_024_02084_8
crossref_primary_10_1109_TIM_2024_3449951
crossref_primary_10_1016_j_inffus_2025_103115
crossref_primary_10_3389_fevo_2023_1146887
crossref_primary_10_1109_ACCESS_2024_3426652
crossref_primary_10_4018_IJITSA_322411
crossref_primary_10_7717_peerj_cs_2607
crossref_primary_10_7717_peerj_cs_1548
crossref_primary_10_1080_08839514_2024_2379731
crossref_primary_10_7717_peerj_cs_1304
crossref_primary_10_7717_peerj_cs_1920
crossref_primary_10_1007_s13132_024_01998_7
crossref_primary_10_7717_peerj_cs_1602
crossref_primary_10_1007_s13132_024_01938_5
crossref_primary_10_4018_IJITSA_323194
crossref_primary_10_1038_s41598_024_80572_2
crossref_primary_10_7717_peerj_cs_1662
crossref_primary_10_1109_ACCESS_2024_3410281
crossref_primary_10_1109_JIOT_2024_3493888
crossref_primary_10_3389_fbioe_2024_1394314
Cites_doi 10.1109/JSEN.2019.2894143
10.1109/JSEN.2021.3131582
10.1007/s10882-019-09664-6
10.1016/j.inffus.2014.03.005
10.1016/j.proeng.2014.06.009
10.1109/TIM.2011.2179830
10.1109/TIM.2013.2281562
10.1109/ACCESS.2021.3095477
10.1109/ICASSP40776.2020.9053270
10.3390/s21041347
10.1109/JSEN.2019.2944412
10.1109/JIOT.2021.3102856
10.1109/TBME.2016.2523512
10.1109/TIE.2019.2897550
10.1109/TIM.2015.2504078
10.1109/JBHI.2013.2293887
10.1109/TBME.2015.2410142
10.1109/JIOT.2019.2915791
10.1109/TBME.2012.2212245
10.1109/JBHI.2016.2608720
10.1109/TII.2016.2585643
10.1016/j.gaitpost.2012.07.032
10.1109/TMECH.2015.2430357
10.1016/j.inffus.2017.04.006
10.1016/j.compeleceng.2021.107567
10.1016/j.inffus.2019.03.002
10.1109/TNSRE.2015.2409123
10.1109/JSEN.2020.2999863
10.1109/TMECH.2018.2836934
10.1109/JBHI.2021.3067931
10.1109/TBME.2014.2368211
10.1109/TNSRE.2019.2914187
10.1109/JSEN.2020.3016642
10.1109/TNSRE.2020.3018158
10.1002/admt.202100566
10.1109/TBME.2019.2900863
10.1016/j.gaitpost.2010.07.019
10.1109/IPIN.2018.8533770
10.1109/ICORR.2011.5975346
10.1109/TBME.2010.2060723
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/THMS.2022.3228515
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore DIgital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2305
EndPage 11
ExternalDocumentID 10_1109_THMS_2022_3228515
9991866
Genre orig-research
GrantInformation_xml – fundername: Central University Basic Research Fund of China
  grantid: DUT21YG125; DUT22YG240
– fundername: Science and Technology Program of Liaoning Province
  grantid: 2021JH2/10300049
– fundername: National Natural Science Foundation of China
  grantid: 61873044; 62272081; 61903062
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-ebe17d09ca7c5b9b9b82b2b3ff5b9dc966feca9beab3e414dfd308618816ebf93
IEDL.DBID RIE
ISSN 2168-2291
IngestDate Mon Jun 30 04:14:04 EDT 2025
Wed Oct 01 03:41:29 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Wed Aug 27 02:29:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ebe17d09ca7c5b9b9b82b2b3ff5b9dc966feca9beab3e414dfd308618816ebf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9795-2160
0000-0003-1510-5289
0000-0003-4959-3372
0000-0001-6846-546X
0000-0002-1631-9652
PQID 2765174287
PQPubID 85416
PageCount 11
ParticipantIDs crossref_primary_10_1109_THMS_2022_3228515
ieee_primary_9991866
proquest_journals_2765174287
crossref_citationtrail_10_1109_THMS_2022_3228515
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on human-machine systems
PublicationTitleAbbrev THMS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref27
  doi: 10.1109/JSEN.2019.2894143
– ident: ref11
  doi: 10.1109/JSEN.2021.3131582
– ident: ref14
  doi: 10.1007/s10882-019-09664-6
– ident: ref13
  doi: 10.1016/j.inffus.2014.03.005
– ident: ref17
  doi: 10.1016/j.proeng.2014.06.009
– ident: ref25
  doi: 10.1109/TIM.2011.2179830
– ident: ref26
  doi: 10.1109/TIM.2013.2281562
– ident: ref35
  doi: 10.1109/ACCESS.2021.3095477
– ident: ref22
  doi: 10.1109/ICASSP40776.2020.9053270
– ident: ref40
  doi: 10.3390/s21041347
– ident: ref30
  doi: 10.1109/JSEN.2019.2944412
– ident: ref38
  doi: 10.1109/JIOT.2021.3102856
– ident: ref6
  doi: 10.1109/TBME.2016.2523512
– ident: ref21
  doi: 10.1109/TIE.2019.2897550
– ident: ref12
  doi: 10.1109/TIM.2015.2504078
– ident: ref23
  doi: 10.1109/JBHI.2013.2293887
– ident: ref3
  doi: 10.1109/TBME.2015.2410142
– ident: ref4
  doi: 10.1109/JIOT.2019.2915791
– ident: ref28
  doi: 10.1109/TBME.2012.2212245
– ident: ref24
  doi: 10.1109/TIE.2019.2897550
– ident: ref8
  doi: 10.1109/JBHI.2016.2608720
– ident: ref5
  doi: 10.1109/TII.2016.2585643
– ident: ref18
  doi: 10.1016/j.gaitpost.2012.07.032
– ident: ref15
  doi: 10.1109/TMECH.2015.2430357
– ident: ref32
  doi: 10.1016/j.inffus.2017.04.006
– ident: ref41
  doi: 10.1016/j.compeleceng.2021.107567
– ident: ref16
  doi: 10.1016/j.inffus.2019.03.002
– ident: ref29
  doi: 10.1109/TNSRE.2015.2409123
– ident: ref39
  doi: 10.1109/JSEN.2020.2999863
– ident: ref9
  doi: 10.1109/TMECH.2018.2836934
– ident: ref31
  doi: 10.1109/JBHI.2021.3067931
– ident: ref2
  doi: 10.1109/TBME.2014.2368211
– ident: ref7
  doi: 10.1109/TNSRE.2019.2914187
– ident: ref34
  doi: 10.1109/JSEN.2020.3016642
– ident: ref1
  doi: 10.1109/TNSRE.2020.3018158
– ident: ref10
  doi: 10.1002/admt.202100566
– ident: ref19
  doi: 10.1109/TBME.2019.2900863
– ident: ref36
  doi: 10.1016/j.gaitpost.2010.07.019
– ident: ref37
  doi: 10.1109/IPIN.2018.8533770
– ident: ref33
  doi: 10.1109/ICORR.2011.5975346
– ident: ref20
  doi: 10.1109/TBME.2010.2060723
SSID ssj0000825558
Score 2.5552936
Snippet Gait analysis is a prosperous tool for the clinical evaluation and diagnosis. In this article, a portable gait analysis system based on foot-mounted inertial...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Estimation
Gait
Gait analysis
Inertial sensing devices
Inertial sensors
Labeling
long short-term memory(LSTM)
Machine learning
Man-machine systems
Manuals
Micromechanical devices
Parameters
phase segmentation
Quaternions
Recurrent neural networks
Segmentation
zero velocity updates (ZUPT)
Title Threshold-Free Phase Segmentation and Zero Velocity Detection for Gait Analysis Using Foot-Mounted Inertial Sensors
URI https://ieeexplore.ieee.org/document/9991866
https://www.proquest.com/docview/2765174287
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000825558
  issn: 2168-2291
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp3JoobTqlg_50BMiS-IkTnJEwLIgbYW0S4W4RP4YA6JN0G72wq9n7GRX0CJU5eJItjTSczLvecYzAD8UWiFtEgcoExMkKuOB4jQib2JSqWykpROKo59ieJVcXKfXK3CwvAuDiD75DPtu6GP5ptZzd1R26MhMLsQqrGa5aO9qLc9TnNRJfTtOHgkCnxdRF8SMwuJwMhyNSQxy3qcNTCQjfeWGfF-Vf37G3sMMPsFoYVubWPLQnzeqr5_-Ktv4v8ZvwMeOarKjdm9swgpWn2H9RQHCLZhNCMqZi0AFgykiu7wjp8bGePunu5JUMVkZdoPTmv1C8nvE2dkJNj5_q2JEeNmZvG_YorQJ8xkIbFDXTTByXSjQsPPKpW6TIWNSzPV09gWuBqeT42HQtWEINHGBJiCYo8yEhZaZTlVBT84VV7G19GY06SWLWhYKpYoxiRJjTUxCKcrzSKCyRfwV1qq6wm_AYpvr3EhhyCUmSLwek9AaSzQnlTGPTQ_CBSql7mqUu1YZv0uvVcKidECWDsiyA7IH-8slj22BjvcmbzlglhM7THqws4C-7D7hWckz4ap4k6L8_vaqbfjges-3Kdw7sNZM57hLDKVRe35rPgOswOTS
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V5QAcgNJWbFvAh54qsk0cJ5scEbBsP1JV2i2quET-GLcISKrd7IVf37GTXbWlqlAujmRLIz0n855nPAOwp9Cm0oo4QClMINSQB4rTiLyJSaSykZZOKBan6fhcHF0kF2vwcXUXBhF98hkO3NDH8k2tF-6o7MCRmSxNn8DTRAiRtLe1VicqTuwkviEnj1KCn-dRF8aMwvxgOi4mJAc5H9AWJpqR3HFEvrPKP79j72NGr6BYWtemlvwaLBo10H_vFW78X_Nfw8uObLJP7e5YhzWs3sCLWyUIN2A-JTDnLgYVjGaI7OyK3Bqb4OWf7lJSxWRl2A-c1ew7kucj1s6-YOMzuCpGlJd9kz8btixuwnwOAhvVdRMUrg8FGnZYueRtMmRCmrmezTfhfPR1-nkcdI0YAk1soAkI6GhowlzLoU5UTk_GFVextfRmNCkmi1rmCqWKUUTCWBOTVIqyLEpR2Tzegl5VV_gWWGwznRmZGnKKAonZowitsUR0Ehnz2PQhXKJS6q5KuWuW8bv0aiXMSwdk6YAsOyD7sL9act2W6Hhs8oYDZjWxw6QPu0voy-4jnpd8mLo63qQptx9e9QGejafFSXlyeHq8A89dJ_o2oXsXes1sge-IrzTqvd-mN8zo6B8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Threshold-Free+Phase+Segmentation+and+Zero+Velocity+Detection+for+Gait+Analysis+Using+Foot-Mounted+Inertial+Sensors&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Shi%2C+Xin&rft.au=Wang%2C+Zhelong&rft.au=Zhao%2C+Hongyu&rft.au=Qiu%2C+Sen&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=2168-2291&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTHMS.2022.3228515&rft.externalDocID=9991866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon