Threshold-Free Phase Segmentation and Zero Velocity Detection for Gait Analysis Using Foot-Mounted Inertial Sensors

Gait analysis is a prosperous tool for the clinical evaluation and diagnosis. In this article, a portable gait analysis system based on foot-mounted inertial sensors is established. A threshold-free method using a long short-term memory recurrent neural network is constructed to segment four typical...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 53; no. 1; pp. 1 - 11
Main Authors Shi, Xin, Wang, Zhelong, Zhao, Hongyu, Qiu, Sen, Liu, Ruichen, Lin, Fang, Tang, Kai
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2291
2168-2305
DOI10.1109/THMS.2022.3228515

Cover

More Information
Summary:Gait analysis is a prosperous tool for the clinical evaluation and diagnosis. In this article, a portable gait analysis system based on foot-mounted inertial sensors is established. A threshold-free method using a long short-term memory recurrent neural network is constructed to segment four typical gait phases in a gait sequence for the temporal parameters analysis. Segmentation accuracy reaches over 95% across recruited subjects with distinct gait patterns, which is significantly superior when compared with traditional machine learning methods. The zero-velocity indicator is generated successively according to the segmented sequence to accomplish zero velocity update for the spatial parameter calculation. The accuracy of the proposed system is also validated through the OptiTrack in the lab. The comparison result of the stride length shows that the error between the two systems is less than 2%, which demonstrates that our system can satisfy the demand in the clinical.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2168-2291
2168-2305
DOI:10.1109/THMS.2022.3228515