Emotion Recognition From Gait Analyses: Current Research and Future Directions

Human gait refers to a daily motion that represents not only mobility but can also be used to identify the walker by either human observers or computers. Recent studies reveal that gait even conveys information about the walker's emotion. Individuals in different emotion states may show differe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computational social systems Vol. 11; no. 1; pp. 363 - 377
Main Authors Xu, Shihao, Fang, Jing, Hu, Xiping, Ngai, Edith, Wang, Wei, Guo, Yi, Leung, Victor C. M.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2329-924X
2373-7476
DOI10.1109/TCSS.2022.3223251

Cover

More Information
Summary:Human gait refers to a daily motion that represents not only mobility but can also be used to identify the walker by either human observers or computers. Recent studies reveal that gait even conveys information about the walker's emotion. Individuals in different emotion states may show different gait patterns. The mapping between various emotions and gait patterns provides a new source for automated emotion recognition. Compared to traditional emotion detection biometrics, such as facial expression, speech, and physiological parameters, gait is remotely observable, more difficult to imitate, and requires less cooperation from the subject. These advantages make gait a promising source for emotion detection. This article reviews current research on gait-based emotion detection, particularly on how gait parameters can be affected by different emotion states and how the emotion states can be recognized through distinct gait patterns. We focus on the detailed methods and techniques applied in the whole process of emotion recognition: data collection, preprocessing, and classification. Finally, we discuss possible future developments of efficient and effective gait-based emotion recognition using state-of-the-art techniques in intelligent computation and big data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2329-924X
2373-7476
DOI:10.1109/TCSS.2022.3223251