DB-BlendMask: Decomposed Attention and Balanced BlendMask for Instance Segmentation of High-Resolution Remote Sensing Images
Instance segmentation is an important method for high-resolution remote sensing images (HRRSIs) analysis. Traditional instance segmentation algorithms are not suitable to analyze complex HRRSIs that exhibit: 1) various shapes and sizes of targets; 2) a large number of small targets; and 3) data with...
        Saved in:
      
    
          | Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 15 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0196-2892 1558-0644  | 
| DOI | 10.1109/TGRS.2021.3138913 | 
Cover
| Summary: | Instance segmentation is an important method for high-resolution remote sensing images (HRRSIs) analysis. Traditional instance segmentation algorithms are not suitable to analyze complex HRRSIs that exhibit: 1) various shapes and sizes of targets; 2) a large number of small targets; and 3) data with long tail distribution. Here we introduce DB-BlendMask, an efficient and accurate instance segmentation method that can accommodate complex HRRSIs. It is composed of size balance coefficient (SBC), class balance module (CBM), and decomposed attention blender module (DA-Blender module). SBC consists of a fair weight allocation strategy for positive samples in object detection. CBM combines classification obtained in object detection stage to guide the semantic feature extraction. Complementary to a traditional convolutional neural network (CNN) architecture, DA-Blender module has the ability to considerably compress space complexity of attention and merge attention with semantic feature to generate the instance mask. We compare the performance of DB-BlendMask with a benchmark Mask R-CNN on two typical datasets, iSAID, and ISPRS Postdam. We obtain an average detection precision of 39.2% on iSAID and 63.6% on ISPRS Postdam, which corresponds to an improvement of 2.5% and 2.7%, respectively, compared to the benchmark in a real-time scenario. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
| ISSN: | 0196-2892 1558-0644  | 
| DOI: | 10.1109/TGRS.2021.3138913 |