Adaptive Neural Control of Nonlinear Systems With Unknown Control Directions and Input Dead-Zone

This paper presents an adaptive neural control approach for nonstrict-feedback nonlinear systems in presence of unmodeled dynamics, unknown control directions and input dead-zone nonlinearity. To handle the difficulty due to uncertain control directions, Nussbaum gain functions are applied. Based on...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man, and cybernetics. Systems Vol. 48; no. 11; pp. 1897 - 1907
Main Authors Wang, Huanqing, Karimi, Hamid Reza, Liu, Peter Xiaoping, Yang, Hongyan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2216
2168-2232
DOI10.1109/TSMC.2017.2709813

Cover

More Information
Summary:This paper presents an adaptive neural control approach for nonstrict-feedback nonlinear systems in presence of unmodeled dynamics, unknown control directions and input dead-zone nonlinearity. To handle the difficulty due to uncertain control directions, Nussbaum gain functions are applied. Based on the structural characteristic of radial basis function neural networks, a backstepping-based adaptive neural control algorithm is developed. The main contributions of this paper lie in the fact that a backstepping-based neural control algorithm is developed for nonstrict-feedback nonlinear systems with unmodeled dynamics, unknown control directions and actuator dead-zone, and the total number of adaptive laws is not greater than the order of control system. As a beneficial result, the controller is much easier to be implemented in practice with less computational burden. A simulation example is given to reveal the viability of the presented approach. It is demonstrated by both theoretical analysis and simulation study that the presented control strategy ensures the semiglobally uniform ultimate boundedness of all closed-loop system signals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2017.2709813