Adaptive Event-Triggered SMC for Stochastic Switching Systems With Semi-Markov Process and Application to Boost Converter Circuit Model

In this article, the sliding mode control (SMC) design is studied for a class of stochastic switching systems subject to semi-Markov process via an adaptive event-triggered mechanism. Network-induced communication constraints, semi-Markov switching parameters, and uncertain parameters are considered...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. I, Regular papers Vol. 68; no. 2; pp. 786 - 796
Main Authors Qi, Wenhai, Zong, Guangdeng, Zheng, Wei Xing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1549-8328
1558-0806
DOI10.1109/TCSI.2020.3036847

Cover

More Information
Summary:In this article, the sliding mode control (SMC) design is studied for a class of stochastic switching systems subject to semi-Markov process via an adaptive event-triggered mechanism. Network-induced communication constraints, semi-Markov switching parameters, and uncertain parameters are considered in a unified framework for the SMC design. Due to the constraint of measuring transducers, the system states always appear with unmeasurable characteristic. Compared with the traditional event-triggered mechanism, the adaptive event-triggered mechanism can effectively reduce the number of triggering than the static event-triggered mechanism. During the data transmission of network communication systems, network-induced delays are characterized from the event trigger to the zero-order holder. The aim of this work is to design an appropriate SMC law based on an adaptive event-triggered communication scheme such that the resulting closed-loop system could realize stochastic stability and reduce communication burden. By introducing the stochastic semi-Markov Lyapunov functional, sojourn-time-dependent sufficient conditions are established for stochastic stability. Then, a suitable SMC law is designed such that the system state can be driven onto the specified sliding surface in a finite-time region. Finally, the simulation study on boost converter circuit model (BCCM) illustrates the effectiveness of the theoretical findings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2020.3036847