Robust Classification of Largely Corrupted Electronic Nose Data Using Deep Neural Networks

Data loss for electronic noses may occur because of the sensor's installation environment or from electrical disturbances. As a result, electronic noses may experience difficulties when identifying gases. This paper proposes two deep neural network-based functions for identifying gases. First,...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 21; no. 4; pp. 5052 - 5059
Main Authors Yoo, YoungJoon, Kim, Hyun-Il, Choi, Sang-Il
Format Journal Article
LanguageEnglish
Published New York IEEE 15.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2020.3034145

Cover

More Information
Summary:Data loss for electronic noses may occur because of the sensor's installation environment or from electrical disturbances. As a result, electronic noses may experience difficulties when identifying gases. This paper proposes two deep neural network-based functions for identifying gases. First, a denoising auto-encoder based on the corruption reconstruction method is proposed for electronic nose data to solve this problem. Second, a convolutional neural network-based gas-classifying model is proposed. Although the electronic nose data are highly discriminative, they are sensitive to the corruption of information; hence, they require an efficient restoration method for practical use. From the experiments we demonstrate that the proposed denoising auto-encoder provides a strong restoration capability, and the convolutional neural network-based classifier successfully discriminates the gas data samples with a classification rate over 95% even when the data loss is 50%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2020.3034145