A Framework for Hardware Impairments-Aware Multi-Antenna Transceiver Design in IoT Systems via Majorization-Minimization

In view of the nonideality of communication links in the Internet of Things (IoT) originating from transceiver hardware impairments, in this article, we introduce a general framework for hardware impairments-aware multiantenna transceiver design, which considers different availabilities of CSI at th...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 10; no. 1; pp. 417 - 433
Main Authors Gong, Shiqi, Wang, Jintao, Zhao, Xin, Ma, Shaodan, Xing, Chengwen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2022.3200828

Cover

More Information
Summary:In view of the nonideality of communication links in the Internet of Things (IoT) originating from transceiver hardware impairments, in this article, we introduce a general framework for hardware impairments-aware multiantenna transceiver design, which considers different availabilities of CSI at the transmitter (CSIT) and the receiver (CSIR). The well-known Kronecker model is applied to characterize stochastic channel state information (CSI) errors. For each case, we aim to minimize the (average) total mean square error (MSE) of all data streams subject to the practical per-antenna power constraints. To address the nonconvexity of the formulated problem, we propose an efficient majorization-minimization (MM)-based iterative algorithm to transform the original problem into a series of convex subproblems with semiclosed-form optimal solutions. For low-complexity implementation, we also develop an alternative scheme for directly finding a high-quality suboptimal solution by considering both worst case hardware impairments and worst case CSI errors. In particular, since an explicit expression of the average total MSE for the perfect CSIR and imperfect CSIT case is hard to derive, we instead optimize its effective upper and lower bounds. The prospective applications of our work in the two currently popular multiple-input-multiple-output (MIMO) IoT scenarios are then discussed. Furthermore, we fundamentally reveal the MSE floor effect caused by both hardware distortion and CSI imperfection in the high-SNR regime. Numerical results illustrate the excellent average total MSE and average bit error rate (BER) performance of our proposed algorithms over the adopted benchmark schemes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2327-4662
2327-4662
DOI:10.1109/JIOT.2022.3200828