A 50 nW-to-10 mW Output Power Tri-Mode Digital Buck Converter With Self-Tracking Zero Current Detection for Photovoltaic Energy Harvesting

This paper presents a tri-mode digital buck converter in 0.18-μm CMOS technology for photovoltaic energy harvesting. The on-chip gate-boosted digital pulsewidth modulation (DPWM) improves the conversion efficiency at heavy load conditions. Pulse- frequency modulation (PFM) along with digital self-tr...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 51; no. 2; pp. 523 - 532
Main Authors Po-Hung Chen, Chung-Shiang Wu, Kai-Chun Lin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9200
1558-173X
DOI10.1109/JSSC.2015.2506685

Cover

More Information
Summary:This paper presents a tri-mode digital buck converter in 0.18-μm CMOS technology for photovoltaic energy harvesting. The on-chip gate-boosted digital pulsewidth modulation (DPWM) improves the conversion efficiency at heavy load conditions. Pulse- frequency modulation (PFM) along with digital self-tracking zero current detection is proposed to avoid reverse current at light load. The asynchronous mode (AM) operation further reduces the controller loss and improves the conversion efficiency at ultra-light load conditions. By applying DPWM, PFM, and AM at different load conditions, the proposed converter provides a maximum conversion efficiency of 92% with output power ranging from 50 nW to 10 mW. In addition, the proposed buck converter achieves more than 70% efficiency from 400 nW to 10 mW output power.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2015.2506685