Multiple-Change-Point Modeling and Exact Bayesian Inference of Degradation Signal for Prognostic Improvement
Prognostics play an increasingly important role in modern engineering systems for smart maintenance decision-making. In parametric regression-based approaches, the parametric models are often too rigid to model degradation signals in many applications. In this paper, we propose a Bayesian multiple-c...
Saved in:
| Published in | IEEE transactions on automation science and engineering Vol. 16; no. 2; pp. 613 - 628 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1545-5955 1558-3783 |
| DOI | 10.1109/TASE.2018.2844204 |
Cover
| Summary: | Prognostics play an increasingly important role in modern engineering systems for smart maintenance decision-making. In parametric regression-based approaches, the parametric models are often too rigid to model degradation signals in many applications. In this paper, we propose a Bayesian multiple-change-point (CP) modeling framework to better capture the degradation path and improve the prognostics. At the offline modeling stage, a novel stochastic process is proposed to model the joint prior of CPs and positions. All hyperparameters are estimated through an empirical two-stage process. At the online monitoring and remaining useful life (RUL) prediction stage, a recursive updating algorithm is developed to exactly calculate the posterior distribution and RUL prediction sequentially. To control the computational cost, a fixed-support-size strategy in the online model updating and a partial Monte Carlo strategy in the RUL prediction are proposed. The effectiveness and advantages of the proposed method are demonstrated through thorough simulation and real case studies. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1545-5955 1558-3783 |
| DOI: | 10.1109/TASE.2018.2844204 |