Nanowire-Based Sensor Array for Detection of Cross-Sensitive Gases Using PCA and Machine Learning Algorithms

In this work, a gas sensor array has been designed and developed comprising of Pt, Cu and Ag decorated TiO 2 and ZnO functionalized GaN nanowires using industry standard top-down fabrication approach. The receptor metal/metal-oxide combinations within the array have been determined from our prior mo...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 20; no. 11; pp. 6020 - 6028
Main Authors Khan, Md Ashfaque Hossain, Thomson, Brian, Debnath, Ratan, Motayed, Abhishek, Rao, Mulpuri V.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2020.2972542

Cover

Abstract In this work, a gas sensor array has been designed and developed comprising of Pt, Cu and Ag decorated TiO 2 and ZnO functionalized GaN nanowires using industry standard top-down fabrication approach. The receptor metal/metal-oxide combinations within the array have been determined from our prior molecular simulation results using first principle calculations based on density functional theory (DFT). The gas sensing data was collected for both singular and mixture of NO 2 , ethanol, SO 2 and H 2 in presence of H 2 O and O 2 gases under UV light at room temperature. Each gas produced a unique response pattern across the sensors within the array by which precise identification of cross-sensitive gases is possible. After pre-processing of raw data, unsupervised principal component analysis (PCA) technique was applied on the array response. It is found that, each analyte gas forms a separate cluster in the score plot for all the target gases and their mixtures, indicating a clear discrimination among them. Then, four supervised machine learning algorithms such as- Decision Tree, Support Vector Machine (SVM), Naive Bayes (kernel) and k-Nearest Neighbor (k-NN) were trained and optimized using their significant parameters with our array dataset for the classification of gas type. Results indicate that the optimized SVM and NB classifier models exhibited 100% classification accuracy on test dataset. Practical applicability of the considered algorithms has been discussed as well. Moreover, this array device works at room-temperature using very low power and low-cost UV light-emitting diode (LED) as compared to high power consuming commercially available metal-oxide sensors.
AbstractList In this work, a gas sensor array has been designed and developed comprising of Pt, Cu and Ag decorated TiO 2 and ZnO functionalized GaN nanowires using industry standard top-down fabrication approach. The receptor metal/metal-oxide combinations within the array have been determined from our prior molecular simulation results using first principle calculations based on density functional theory (DFT). The gas sensing data was collected for both singular and mixture of NO 2 , ethanol, SO 2 and H 2 in presence of H 2 O and O 2 gases under UV light at room temperature. Each gas produced a unique response pattern across the sensors within the array by which precise identification of cross-sensitive gases is possible. After pre-processing of raw data, unsupervised principal component analysis (PCA) technique was applied on the array response. It is found that, each analyte gas forms a separate cluster in the score plot for all the target gases and their mixtures, indicating a clear discrimination among them. Then, four supervised machine learning algorithms such as- Decision Tree, Support Vector Machine (SVM), Naive Bayes (kernel) and k-Nearest Neighbor (k-NN) were trained and optimized using their significant parameters with our array dataset for the classification of gas type. Results indicate that the optimized SVM and NB classifier models exhibited 100% classification accuracy on test dataset. Practical applicability of the considered algorithms has been discussed as well. Moreover, this array device works at room-temperature using very low power and low-cost UV light-emitting diode (LED) as compared to high power consuming commercially available metal-oxide sensors.
In this work, a gas sensor array has been designed and developed comprising of Pt, Cu and Ag decorated TiO2 and ZnO functionalized GaN nanowires using industry standard top-down fabrication approach. The receptor metal/metal-oxide combinations within the array have been determined from our prior molecular simulation results using first principle calculations based on density functional theory (DFT). The gas sensing data was collected for both singular and mixture of NO2, ethanol, SO2 and H2 in presence of H2O and O2 gases under UV light at room temperature. Each gas produced a unique response pattern across the sensors within the array by which precise identification of cross-sensitive gases is possible. After pre-processing of raw data, unsupervised principal component analysis (PCA) technique was applied on the array response. It is found that, each analyte gas forms a separate cluster in the score plot for all the target gases and their mixtures, indicating a clear discrimination among them. Then, four supervised machine learning algorithms such as- Decision Tree, Support Vector Machine (SVM), Naive Bayes (kernel) and k-Nearest Neighbor (k-NN) were trained and optimized using their significant parameters with our array dataset for the classification of gas type. Results indicate that the optimized SVM and NB classifier models exhibited 100% classification accuracy on test dataset. Practical applicability of the considered algorithms has been discussed as well. Moreover, this array device works at room-temperature using very low power and low-cost UV light-emitting diode (LED) as compared to high power consuming commercially available metal-oxide sensors.
Author Rao, Mulpuri V.
Motayed, Abhishek
Thomson, Brian
Khan, Md Ashfaque Hossain
Debnath, Ratan
Author_xml – sequence: 1
  givenname: Md Ashfaque Hossain
  orcidid: 0000-0002-0070-8872
  surname: Khan
  fullname: Khan, Md Ashfaque Hossain
  email: mkhan53@gmu.edu
  organization: Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA
– sequence: 2
  givenname: Brian
  surname: Thomson
  fullname: Thomson, Brian
  organization: N5 Sensors, Inc., Rockville, MD, USA
– sequence: 3
  givenname: Ratan
  surname: Debnath
  fullname: Debnath, Ratan
  organization: N5 Sensors, Inc., Rockville, MD, USA
– sequence: 4
  givenname: Abhishek
  surname: Motayed
  fullname: Motayed, Abhishek
  organization: N5 Sensors, Inc., Rockville, MD, USA
– sequence: 5
  givenname: Mulpuri V.
  surname: Rao
  fullname: Rao, Mulpuri V.
  email: rmulpuri@gmu.edu
  organization: Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA
BookMark eNp9kEtPAjEUhRuDiYD-AOOmievBPubRWeKIqEE0QRJ3k1puoWRosR00_HtnAnHhwtU9yT3fvTmnhzrWWUDokpIBpSS_eZqNpgNGGBmwPGNJzE5QlyaJiGgWi06rOYlinr2foV4Ia0JoniVZF1VTad238RDdygALPAMbnMdD7-Ue60bdQQ2qNs5ip3HhXQhR6zG1-QI8bpiA58HYJX4thljaBX6WamUs4AlIb9vFsFo6b-rVJpyjUy2rABfH2Ufz-9Fb8RBNXsaPxXASKZbzOkoTzZRMGWeZygThOY0FIySFhCqluFJ5QiBdqFhrCR-SKS1kSlMiUqYXBAjvo-vD3a13nzsIdbl2O2-blyWLm-iEM0obV3ZwqTaVB10qU8s2au2lqUpKyrbasq22bKstj9U2JP1Dbr3ZSL__l7k6MAYAfv0iF4KKmP8ACl2Gag
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1088_1361_6501_ad3306
crossref_primary_10_1016_j_envdev_2024_101002
crossref_primary_10_1021_acs_analchem_1c04319
crossref_primary_10_3390_s20143889
crossref_primary_10_1039_D4LF00128A
crossref_primary_10_1088_1752_7163_abe5c9
crossref_primary_10_1109_JSEN_2022_3198014
crossref_primary_10_1149_2754_2726_acbe0c
crossref_primary_10_1007_s10854_022_09376_2
crossref_primary_10_1016_j_mser_2024_100872
crossref_primary_10_3390_s21144826
crossref_primary_10_1039_D4NR00073K
crossref_primary_10_1007_s42452_024_06102_x
crossref_primary_10_1016_j_sna_2024_115510
crossref_primary_10_3390_chemosensors9020041
crossref_primary_10_1021_acssensors_3c01244
crossref_primary_10_1021_acssensors_3c02654
crossref_primary_10_1016_j_matpr_2023_03_360
crossref_primary_10_1109_TDMR_2020_3028786
crossref_primary_10_3390_s21020624
crossref_primary_10_3390_jsan14010006
crossref_primary_10_1002_admt_202202038
crossref_primary_10_1021_acssensors_3c01839
crossref_primary_10_3390_nano11112773
crossref_primary_10_1134_S1061934823080087
crossref_primary_10_1039_D2TC04188J
crossref_primary_10_1109_JSEN_2024_3375872
crossref_primary_10_1038_s41377_023_01120_7
crossref_primary_10_3389_fchem_2021_629329
crossref_primary_10_1109_TIM_2024_3396837
crossref_primary_10_3389_fenrg_2022_964811
crossref_primary_10_1088_1361_6501_abd5f0
crossref_primary_10_1088_1361_6501_acd0cb
crossref_primary_10_1016_j_matchemphys_2023_128628
crossref_primary_10_1002_aisy_202200169
crossref_primary_10_1021_acssensors_4c03164
crossref_primary_10_3390_s20236781
crossref_primary_10_1038_s41598_023_38290_8
crossref_primary_10_3390_batteries10110390
crossref_primary_10_1016_j_trac_2024_117958
crossref_primary_10_3390_technologies11020045
crossref_primary_10_1016_j_jii_2024_100715
crossref_primary_10_1021_acsami_0c20566
crossref_primary_10_1109_JMEMS_2023_3343815
crossref_primary_10_3390_agronomy14020341
crossref_primary_10_1039_D3NR05900F
crossref_primary_10_1371_journal_pone_0310101
crossref_primary_10_1021_acsphotonics_4c00945
crossref_primary_10_1109_JSEN_2023_3304062
crossref_primary_10_3390_s21113736
crossref_primary_10_1002_adem_202200830
crossref_primary_10_1016_j_snb_2023_135230
crossref_primary_10_1109_JSEN_2022_3145875
crossref_primary_10_1109_TIM_2024_3481592
crossref_primary_10_1016_j_measurement_2021_109682
crossref_primary_10_1149_2754_2726_ad0cd6
crossref_primary_10_1016_j_jre_2024_11_017
crossref_primary_10_1016_j_eswa_2023_122909
crossref_primary_10_1021_acsanm_4c04060
crossref_primary_10_1016_j_aca_2023_341084
crossref_primary_10_3390_mi15121501
crossref_primary_10_1002_advs_202308976
crossref_primary_10_1109_JSEN_2020_2978221
crossref_primary_10_1039_D4TA06632D
crossref_primary_10_1109_JSEN_2023_3234194
crossref_primary_10_3390_ma17215190
crossref_primary_10_3390_electronics13020288
crossref_primary_10_3390_chemosensors10040126
crossref_primary_10_3390_nano13152199
crossref_primary_10_1021_acsnano_2c09314
Cites_doi 10.3390/s19040905
10.3390/s120302610
10.1021/jp9706994
10.1016/j.snb.2015.09.043
10.3390/s19183917
10.1038/nmeth.4346
10.1088/1361-6528/ab6685
10.1109/JPROC.2018.2846568
10.3390/s17040747
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.2972542
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 6028
ExternalDocumentID 10_1109_JSEN_2020_2972542
8988184
Genre orig-research
GrantInformation_xml – fundername: N5 Sensors, Inc
– fundername: NSF
  grantid: ECCS1840712
  funderid: 10.13039/501100008982
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-65f2ca62327c780391482006e51ccc3cc950e6dc4ffaeba2cf8a6160862fd0e03
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:21:47 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Tue Jul 01 03:36:53 EDT 2025
Wed Aug 27 02:39:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-65f2ca62327c780391482006e51ccc3cc950e6dc4ffaeba2cf8a6160862fd0e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0070-8872
PQID 2400103211
PQPubID 75733
PageCount 9
ParticipantIDs ieee_primary_8988184
crossref_citationtrail_10_1109_JSEN_2020_2972542
proquest_journals_2400103211
crossref_primary_10_1109_JSEN_2020_2972542
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref9
ref4
ref3
ref6
ref11
ref10
ref5
ref2
khan (ref8) 0
khan (ref7) 0
(ref1) 2017
References_xml – ident: ref2
  doi: 10.3390/s19040905
– ident: ref4
  doi: 10.3390/s120302610
– ident: ref3
  doi: 10.1021/jp9706994
– ident: ref5
  doi: 10.1016/j.snb.2015.09.043
– ident: ref12
  doi: 10.3390/s19183917
– year: 0
  ident: ref7
  article-title: Scalable metal oxide functionalized GaN nanowire for precise SO2 detection: Experimental results and density functional theory modeling
  publication-title: Sens Actuators B Chem
– ident: ref11
  doi: 10.1038/nmeth.4346
– ident: ref6
  doi: 10.1088/1361-6528/ab6685
– ident: ref9
  doi: 10.1109/JPROC.2018.2846568
– year: 0
  ident: ref8
  article-title: Functionalization of GaN chemical sensors with metal oxides
  publication-title: IEEE Sensors J
– year: 2017
  ident: ref1
  publication-title: Occupational Safety And Health Administration (OSHA)
– ident: ref10
  doi: 10.3390/s17040747
SSID ssj0019757
Score 2.5750148
Snippet In this work, a gas sensor array has been designed and developed comprising of Pt, Cu and Ag decorated TiO 2 and ZnO functionalized GaN nanowires using...
In this work, a gas sensor array has been designed and developed comprising of Pt, Cu and Ag decorated TiO2 and ZnO functionalized GaN nanowires using industry...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6020
SubjectTerms Algorithms
Classification
Computer simulation
Copper
cross-sensitivity
Datasets
Decision trees
Density functional theory
Ethanol
First principles
Gallium nitride
Gas detectors
gas sensor
Gas sensors
Gases
Industry standards
Light emitting diodes
Machine learning
Metal oxides
Model accuracy
Nanowires
Nitrogen dioxide
Platinum
Power consumption
Power management
Principal component analysis
principal component analysis (PCA)
Principal components analysis
Room temperature
Sensor array
Sensor arrays
Sensors
Silver
Support vector machines
Ultraviolet radiation
Title Nanowire-Based Sensor Array for Detection of Cross-Sensitive Gases Using PCA and Machine Learning Algorithms
URI https://ieeexplore.ieee.org/document/8988184
https://www.proquest.com/docview/2400103211
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4CLtsObINNlDHkw04TLo4bx_ax62AIqWgSQ-otcvwDECVBbXqAvx7bcattIMQtivwiR5_t9579-XsA3_xr5ipDsLKc4lwwg4V0FlPDJHVMWRMrz43PipOL_HTCJmtwsLoLY62N5DPbD4_xLN80ehG2yg6FFN6_5Ouwzrns7mqtTgwkj6qefgITnA_4JJ1gZkQenp4fnflMkJI-ldwnRPQfHxSLqjxZiaN7OX4P42XHOlbJTX_RVn398J9m42t7_gE2U5yJht3A-Ahrtt6Cd3-pD27Bm1QA_ep-G6Z-lW2CbDH-4d2aQec-u21m3nym7pGPa9FP20bSVo0ah0bht3BoE5lH6Je3maPIPkC_R0OkaoPGkaVpURJwvUTD6WUzu26vbuef4OL46M_oBKdCDFj7aKDFBXNUKx8oUa65CJryuQhbEZZlWuuB1pIRWxidO6dspah2QhVZEbIlZ4glg8-wUTe13QHkw7-CKsZ4ZUwudKFUpXRQtc8VYVUhekCW0JQ6qZSHYhnTMmYrRJYBzTKgWSY0e_B9ZXLXSXS81Hg7oLNqmIDpwd4S_zJN4nkZ6LVBbzDLdp-3-gJvw7c75tgebLSzhf3qY5S22o-D8xGVd-Li
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5i7MB2gAGb6CibDzuhuThunDjHUmAdoxUSIPUWOf4BE10ytemh_PXYjlsNmKbdoshPcfTZfu_Zn78H8MW-ZqZQBAudUhxzpjDPjMZUsYwaJrTyleeGo2RwE5-P2XgNvq7uwmitPflMd9yjP8tXlZy7rbIjnnHrX-JX8JrZrCJtbmutzgyy1Ot62ilMcNxNx-EMMyLZ0fnV6cjmgpR0aJbalIg-8UK-rMqLtdg7mLMtGC671vBK7jvzuujIh2eqjf_b93ewGSJN1GuGxjas6XIH3v6hP7gDG6EE-t1iFyZ2na2ccDE-to5NoSub31ZTaz4VC2QjW3Sia0_bKlFlUN_9FnZtPPcIfbM2M-T5B-iy30OiVGjoeZoaBQnXW9Sb3FbTn_Xdr9l7uDk7ve4PcCjFgKWNB2qcMEOlsKESTWXKnap8zN1mhGaRlLIrZcaITpSMjRG6EFQaLpIocfmSUUST7gdYL6tS7wGyAWBCBWNpoVTMZSJEIaTTtY8FYUXCW0CW0OQy6JS7chmT3OcrJMsdmrlDMw9otuBwZfK7Een4V-Ndh86qYQCmBe0l_nmYxrPcEWyd4mAUffy71WfYGFwPL_KL76Mf-_DGfafhkbVhvZ7O9YGNWOrikx-oj6m85jM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanowire-Based+Sensor+Array+for+Detection+of+Cross-Sensitive+Gases+Using+PCA+and+Machine+Learning+Algorithms&rft.jtitle=IEEE+sensors+journal&rft.au=Khan%2C+Md+Ashfaque+Hossain&rft.au=Thomson%2C+Brian&rft.au=Debnath%2C+Ratan&rft.au=Motayed%2C+Abhishek&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=20&rft.issue=11&rft.spage=6020&rft.epage=6028&rft_id=info:doi/10.1109%2FJSEN.2020.2972542&rft.externalDocID=8988184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon