Nanowire-Based Sensor Array for Detection of Cross-Sensitive Gases Using PCA and Machine Learning Algorithms
In this work, a gas sensor array has been designed and developed comprising of Pt, Cu and Ag decorated TiO 2 and ZnO functionalized GaN nanowires using industry standard top-down fabrication approach. The receptor metal/metal-oxide combinations within the array have been determined from our prior mo...
Saved in:
Published in | IEEE sensors journal Vol. 20; no. 11; pp. 6020 - 6028 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2020.2972542 |
Cover
Abstract | In this work, a gas sensor array has been designed and developed comprising of Pt, Cu and Ag decorated TiO 2 and ZnO functionalized GaN nanowires using industry standard top-down fabrication approach. The receptor metal/metal-oxide combinations within the array have been determined from our prior molecular simulation results using first principle calculations based on density functional theory (DFT). The gas sensing data was collected for both singular and mixture of NO 2 , ethanol, SO 2 and H 2 in presence of H 2 O and O 2 gases under UV light at room temperature. Each gas produced a unique response pattern across the sensors within the array by which precise identification of cross-sensitive gases is possible. After pre-processing of raw data, unsupervised principal component analysis (PCA) technique was applied on the array response. It is found that, each analyte gas forms a separate cluster in the score plot for all the target gases and their mixtures, indicating a clear discrimination among them. Then, four supervised machine learning algorithms such as- Decision Tree, Support Vector Machine (SVM), Naive Bayes (kernel) and k-Nearest Neighbor (k-NN) were trained and optimized using their significant parameters with our array dataset for the classification of gas type. Results indicate that the optimized SVM and NB classifier models exhibited 100% classification accuracy on test dataset. Practical applicability of the considered algorithms has been discussed as well. Moreover, this array device works at room-temperature using very low power and low-cost UV light-emitting diode (LED) as compared to high power consuming commercially available metal-oxide sensors. |
---|---|
AbstractList | In this work, a gas sensor array has been designed and developed comprising of Pt, Cu and Ag decorated TiO 2 and ZnO functionalized GaN nanowires using industry standard top-down fabrication approach. The receptor metal/metal-oxide combinations within the array have been determined from our prior molecular simulation results using first principle calculations based on density functional theory (DFT). The gas sensing data was collected for both singular and mixture of NO 2 , ethanol, SO 2 and H 2 in presence of H 2 O and O 2 gases under UV light at room temperature. Each gas produced a unique response pattern across the sensors within the array by which precise identification of cross-sensitive gases is possible. After pre-processing of raw data, unsupervised principal component analysis (PCA) technique was applied on the array response. It is found that, each analyte gas forms a separate cluster in the score plot for all the target gases and their mixtures, indicating a clear discrimination among them. Then, four supervised machine learning algorithms such as- Decision Tree, Support Vector Machine (SVM), Naive Bayes (kernel) and k-Nearest Neighbor (k-NN) were trained and optimized using their significant parameters with our array dataset for the classification of gas type. Results indicate that the optimized SVM and NB classifier models exhibited 100% classification accuracy on test dataset. Practical applicability of the considered algorithms has been discussed as well. Moreover, this array device works at room-temperature using very low power and low-cost UV light-emitting diode (LED) as compared to high power consuming commercially available metal-oxide sensors. In this work, a gas sensor array has been designed and developed comprising of Pt, Cu and Ag decorated TiO2 and ZnO functionalized GaN nanowires using industry standard top-down fabrication approach. The receptor metal/metal-oxide combinations within the array have been determined from our prior molecular simulation results using first principle calculations based on density functional theory (DFT). The gas sensing data was collected for both singular and mixture of NO2, ethanol, SO2 and H2 in presence of H2O and O2 gases under UV light at room temperature. Each gas produced a unique response pattern across the sensors within the array by which precise identification of cross-sensitive gases is possible. After pre-processing of raw data, unsupervised principal component analysis (PCA) technique was applied on the array response. It is found that, each analyte gas forms a separate cluster in the score plot for all the target gases and their mixtures, indicating a clear discrimination among them. Then, four supervised machine learning algorithms such as- Decision Tree, Support Vector Machine (SVM), Naive Bayes (kernel) and k-Nearest Neighbor (k-NN) were trained and optimized using their significant parameters with our array dataset for the classification of gas type. Results indicate that the optimized SVM and NB classifier models exhibited 100% classification accuracy on test dataset. Practical applicability of the considered algorithms has been discussed as well. Moreover, this array device works at room-temperature using very low power and low-cost UV light-emitting diode (LED) as compared to high power consuming commercially available metal-oxide sensors. |
Author | Rao, Mulpuri V. Motayed, Abhishek Thomson, Brian Khan, Md Ashfaque Hossain Debnath, Ratan |
Author_xml | – sequence: 1 givenname: Md Ashfaque Hossain orcidid: 0000-0002-0070-8872 surname: Khan fullname: Khan, Md Ashfaque Hossain email: mkhan53@gmu.edu organization: Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA – sequence: 2 givenname: Brian surname: Thomson fullname: Thomson, Brian organization: N5 Sensors, Inc., Rockville, MD, USA – sequence: 3 givenname: Ratan surname: Debnath fullname: Debnath, Ratan organization: N5 Sensors, Inc., Rockville, MD, USA – sequence: 4 givenname: Abhishek surname: Motayed fullname: Motayed, Abhishek organization: N5 Sensors, Inc., Rockville, MD, USA – sequence: 5 givenname: Mulpuri V. surname: Rao fullname: Rao, Mulpuri V. email: rmulpuri@gmu.edu organization: Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA |
BookMark | eNp9kEtPAjEUhRuDiYD-AOOmievBPubRWeKIqEE0QRJ3k1puoWRosR00_HtnAnHhwtU9yT3fvTmnhzrWWUDokpIBpSS_eZqNpgNGGBmwPGNJzE5QlyaJiGgWi06rOYlinr2foV4Ia0JoniVZF1VTad238RDdygALPAMbnMdD7-Ue60bdQQ2qNs5ip3HhXQhR6zG1-QI8bpiA58HYJX4thljaBX6WamUs4AlIb9vFsFo6b-rVJpyjUy2rABfH2Ufz-9Fb8RBNXsaPxXASKZbzOkoTzZRMGWeZygThOY0FIySFhCqluFJ5QiBdqFhrCR-SKS1kSlMiUqYXBAjvo-vD3a13nzsIdbl2O2-blyWLm-iEM0obV3ZwqTaVB10qU8s2au2lqUpKyrbasq22bKstj9U2JP1Dbr3ZSL__l7k6MAYAfv0iF4KKmP8ACl2Gag |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1088_1361_6501_ad3306 crossref_primary_10_1016_j_envdev_2024_101002 crossref_primary_10_1021_acs_analchem_1c04319 crossref_primary_10_3390_s20143889 crossref_primary_10_1039_D4LF00128A crossref_primary_10_1088_1752_7163_abe5c9 crossref_primary_10_1109_JSEN_2022_3198014 crossref_primary_10_1149_2754_2726_acbe0c crossref_primary_10_1007_s10854_022_09376_2 crossref_primary_10_1016_j_mser_2024_100872 crossref_primary_10_3390_s21144826 crossref_primary_10_1039_D4NR00073K crossref_primary_10_1007_s42452_024_06102_x crossref_primary_10_1016_j_sna_2024_115510 crossref_primary_10_3390_chemosensors9020041 crossref_primary_10_1021_acssensors_3c01244 crossref_primary_10_1021_acssensors_3c02654 crossref_primary_10_1016_j_matpr_2023_03_360 crossref_primary_10_1109_TDMR_2020_3028786 crossref_primary_10_3390_s21020624 crossref_primary_10_3390_jsan14010006 crossref_primary_10_1002_admt_202202038 crossref_primary_10_1021_acssensors_3c01839 crossref_primary_10_3390_nano11112773 crossref_primary_10_1134_S1061934823080087 crossref_primary_10_1039_D2TC04188J crossref_primary_10_1109_JSEN_2024_3375872 crossref_primary_10_1038_s41377_023_01120_7 crossref_primary_10_3389_fchem_2021_629329 crossref_primary_10_1109_TIM_2024_3396837 crossref_primary_10_3389_fenrg_2022_964811 crossref_primary_10_1088_1361_6501_abd5f0 crossref_primary_10_1088_1361_6501_acd0cb crossref_primary_10_1016_j_matchemphys_2023_128628 crossref_primary_10_1002_aisy_202200169 crossref_primary_10_1021_acssensors_4c03164 crossref_primary_10_3390_s20236781 crossref_primary_10_1038_s41598_023_38290_8 crossref_primary_10_3390_batteries10110390 crossref_primary_10_1016_j_trac_2024_117958 crossref_primary_10_3390_technologies11020045 crossref_primary_10_1016_j_jii_2024_100715 crossref_primary_10_1021_acsami_0c20566 crossref_primary_10_1109_JMEMS_2023_3343815 crossref_primary_10_3390_agronomy14020341 crossref_primary_10_1039_D3NR05900F crossref_primary_10_1371_journal_pone_0310101 crossref_primary_10_1021_acsphotonics_4c00945 crossref_primary_10_1109_JSEN_2023_3304062 crossref_primary_10_3390_s21113736 crossref_primary_10_1002_adem_202200830 crossref_primary_10_1016_j_snb_2023_135230 crossref_primary_10_1109_JSEN_2022_3145875 crossref_primary_10_1109_TIM_2024_3481592 crossref_primary_10_1016_j_measurement_2021_109682 crossref_primary_10_1149_2754_2726_ad0cd6 crossref_primary_10_1016_j_jre_2024_11_017 crossref_primary_10_1016_j_eswa_2023_122909 crossref_primary_10_1021_acsanm_4c04060 crossref_primary_10_1016_j_aca_2023_341084 crossref_primary_10_3390_mi15121501 crossref_primary_10_1002_advs_202308976 crossref_primary_10_1109_JSEN_2020_2978221 crossref_primary_10_1039_D4TA06632D crossref_primary_10_1109_JSEN_2023_3234194 crossref_primary_10_3390_ma17215190 crossref_primary_10_3390_electronics13020288 crossref_primary_10_3390_chemosensors10040126 crossref_primary_10_3390_nano13152199 crossref_primary_10_1021_acsnano_2c09314 |
Cites_doi | 10.3390/s19040905 10.3390/s120302610 10.1021/jp9706994 10.1016/j.snb.2015.09.043 10.3390/s19183917 10.1038/nmeth.4346 10.1088/1361-6528/ab6685 10.1109/JPROC.2018.2846568 10.3390/s17040747 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2020.2972542 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 6028 |
ExternalDocumentID | 10_1109_JSEN_2020_2972542 8988184 |
Genre | orig-research |
GrantInformation_xml | – fundername: N5 Sensors, Inc – fundername: NSF grantid: ECCS1840712 funderid: 10.13039/501100008982 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-65f2ca62327c780391482006e51ccc3cc950e6dc4ffaeba2cf8a6160862fd0e03 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:21:47 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Tue Jul 01 03:36:53 EDT 2025 Wed Aug 27 02:39:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-65f2ca62327c780391482006e51ccc3cc950e6dc4ffaeba2cf8a6160862fd0e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0070-8872 |
PQID | 2400103211 |
PQPubID | 75733 |
PageCount | 9 |
ParticipantIDs | ieee_primary_8988184 crossref_citationtrail_10_1109_JSEN_2020_2972542 proquest_journals_2400103211 crossref_primary_10_1109_JSEN_2020_2972542 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref9 ref4 ref3 ref6 ref11 ref10 ref5 ref2 khan (ref8) 0 khan (ref7) 0 (ref1) 2017 |
References_xml | – ident: ref2 doi: 10.3390/s19040905 – ident: ref4 doi: 10.3390/s120302610 – ident: ref3 doi: 10.1021/jp9706994 – ident: ref5 doi: 10.1016/j.snb.2015.09.043 – ident: ref12 doi: 10.3390/s19183917 – year: 0 ident: ref7 article-title: Scalable metal oxide functionalized GaN nanowire for precise SO2 detection: Experimental results and density functional theory modeling publication-title: Sens Actuators B Chem – ident: ref11 doi: 10.1038/nmeth.4346 – ident: ref6 doi: 10.1088/1361-6528/ab6685 – ident: ref9 doi: 10.1109/JPROC.2018.2846568 – year: 0 ident: ref8 article-title: Functionalization of GaN chemical sensors with metal oxides publication-title: IEEE Sensors J – year: 2017 ident: ref1 publication-title: Occupational Safety And Health Administration (OSHA) – ident: ref10 doi: 10.3390/s17040747 |
SSID | ssj0019757 |
Score | 2.5750148 |
Snippet | In this work, a gas sensor array has been designed and developed comprising of Pt, Cu and Ag decorated TiO 2 and ZnO functionalized GaN nanowires using... In this work, a gas sensor array has been designed and developed comprising of Pt, Cu and Ag decorated TiO2 and ZnO functionalized GaN nanowires using industry... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6020 |
SubjectTerms | Algorithms Classification Computer simulation Copper cross-sensitivity Datasets Decision trees Density functional theory Ethanol First principles Gallium nitride Gas detectors gas sensor Gas sensors Gases Industry standards Light emitting diodes Machine learning Metal oxides Model accuracy Nanowires Nitrogen dioxide Platinum Power consumption Power management Principal component analysis principal component analysis (PCA) Principal components analysis Room temperature Sensor array Sensor arrays Sensors Silver Support vector machines Ultraviolet radiation |
Title | Nanowire-Based Sensor Array for Detection of Cross-Sensitive Gases Using PCA and Machine Learning Algorithms |
URI | https://ieeexplore.ieee.org/document/8988184 https://www.proquest.com/docview/2400103211 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4CLtsObINNlDHkw04TLo4bx_ax62AIqWgSQ-otcvwDECVBbXqAvx7bcattIMQtivwiR5_t9579-XsA3_xr5ipDsLKc4lwwg4V0FlPDJHVMWRMrz43PipOL_HTCJmtwsLoLY62N5DPbD4_xLN80ehG2yg6FFN6_5Ouwzrns7mqtTgwkj6qefgITnA_4JJ1gZkQenp4fnflMkJI-ldwnRPQfHxSLqjxZiaN7OX4P42XHOlbJTX_RVn398J9m42t7_gE2U5yJht3A-Ahrtt6Cd3-pD27Bm1QA_ep-G6Z-lW2CbDH-4d2aQec-u21m3nym7pGPa9FP20bSVo0ah0bht3BoE5lH6Je3maPIPkC_R0OkaoPGkaVpURJwvUTD6WUzu26vbuef4OL46M_oBKdCDFj7aKDFBXNUKx8oUa65CJryuQhbEZZlWuuB1pIRWxidO6dspah2QhVZEbIlZ4glg8-wUTe13QHkw7-CKsZ4ZUwudKFUpXRQtc8VYVUhekCW0JQ6qZSHYhnTMmYrRJYBzTKgWSY0e_B9ZXLXSXS81Hg7oLNqmIDpwd4S_zJN4nkZ6LVBbzDLdp-3-gJvw7c75tgebLSzhf3qY5S22o-D8xGVd-Li |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5i7MB2gAGb6CibDzuhuThunDjHUmAdoxUSIPUWOf4BE10ytemh_PXYjlsNmKbdoshPcfTZfu_Zn78H8MW-ZqZQBAudUhxzpjDPjMZUsYwaJrTyleeGo2RwE5-P2XgNvq7uwmitPflMd9yjP8tXlZy7rbIjnnHrX-JX8JrZrCJtbmutzgyy1Ot62ilMcNxNx-EMMyLZ0fnV6cjmgpR0aJbalIg-8UK-rMqLtdg7mLMtGC671vBK7jvzuujIh2eqjf_b93ewGSJN1GuGxjas6XIH3v6hP7gDG6EE-t1iFyZ2na2ccDE-to5NoSub31ZTaz4VC2QjW3Sia0_bKlFlUN_9FnZtPPcIfbM2M-T5B-iy30OiVGjoeZoaBQnXW9Sb3FbTn_Xdr9l7uDk7ve4PcCjFgKWNB2qcMEOlsKESTWXKnap8zN1mhGaRlLIrZcaITpSMjRG6EFQaLpIocfmSUUST7gdYL6tS7wGyAWBCBWNpoVTMZSJEIaTTtY8FYUXCW0CW0OQy6JS7chmT3OcrJMsdmrlDMw9otuBwZfK7Een4V-Ndh86qYQCmBe0l_nmYxrPcEWyd4mAUffy71WfYGFwPL_KL76Mf-_DGfafhkbVhvZ7O9YGNWOrikx-oj6m85jM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanowire-Based+Sensor+Array+for+Detection+of+Cross-Sensitive+Gases+Using+PCA+and+Machine+Learning+Algorithms&rft.jtitle=IEEE+sensors+journal&rft.au=Khan%2C+Md+Ashfaque+Hossain&rft.au=Thomson%2C+Brian&rft.au=Debnath%2C+Ratan&rft.au=Motayed%2C+Abhishek&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=20&rft.issue=11&rft.spage=6020&rft.epage=6028&rft_id=info:doi/10.1109%2FJSEN.2020.2972542&rft.externalDocID=8988184 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |