Adaptive Fuzzy Logic Proportional-Integral-Derivative Control for a Miniature Autofocus Voice Coil Motor Actuator With Retaining Force

This paper presents a miniature autofocus (AF) voice coil motor (VCM) actuator with retaining force in a restricted space that can be applied in an optical AF apparatus. A position encoder consisting of a permanent magnet (PM) and a Hall-effect sensor is used to detect magnetic signals; the displace...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 50; no. 11; pp. 1 - 4
Main Authors Yu, Hsing-Cheng, Chen, Tsan-Chen, Liu, Chien-Sheng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9464
1941-0069
DOI10.1109/TMAG.2014.2323423

Cover

More Information
Summary:This paper presents a miniature autofocus (AF) voice coil motor (VCM) actuator with retaining force in a restricted space that can be applied in an optical AF apparatus. A position encoder consisting of a permanent magnet (PM) and a Hall-effect sensor is used to detect magnetic signals; the displacement of the AF VCM actuator can be obtained from the encoder, thus enabling closed-loop control. The proposed miniature AF VCM actuator consists of a high-permeability magnetoconductive plate and a PM on another side to generate a retaining force when the exciting current is switched off. Using a 3-D finite-element analysis simulation and the Maxwell stress tensor method, the electromagnetic Lorentz force within a movable displacement was determined to be ~16 mN. Blur caused by variable force and load disturbance was observed in images captured during AF operation. This adaptive fuzzy proportional-integral-derivative (PID) control approach compensates for the nonuniform friction, disturbance variation, and even load changes of the movable part of the AF VCM actuator that occur when a subject is photographed in various positions. The adaption mechanism reduced control effort, despite the variable force and load disturbance, and exhibited fast dynamic performance and minimal steady-state error.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2014.2323423