An Efficient Labeled/Unlabeled Random Finite Set Algorithm for Multiobject Tracking
In this article, we propose an efficient random finite set (RFS)-based algorithm for multiobject tracking, in which the object states are modeled by a combination of a labeled multi-Bernoulli (LMB) RFS and a Poisson RFS. The less computationally demanding Poisson part of the algorithm is used to tra...
Saved in:
| Published in | IEEE transactions on aerospace and electronic systems Vol. 58; no. 6; pp. 5256 - 5275 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9251 1557-9603 |
| DOI | 10.1109/TAES.2022.3168252 |
Cover
| Summary: | In this article, we propose an efficient random finite set (RFS)-based algorithm for multiobject tracking, in which the object states are modeled by a combination of a labeled multi-Bernoulli (LMB) RFS and a Poisson RFS. The less computationally demanding Poisson part of the algorithm is used to track potential objects whose existence is unlikely. Only if a quantity characterizing the plausibility of object existence is above a threshold, a new labeled Bernoulli component is created, and the object is tracked by the more accurate but more computationally demanding LMB part of the algorithm. Conversely, a labeled Bernoulli component is transferred back to the Poisson RFS if the corresponding existence probability falls below another threshold. Contrary to existing hybrid algorithms based on multi-Bernoulli and Poisson RFSs, the proposed method facilitates track continuity and implements complexity-reducing features. Simulation results demonstrate a large complexity reduction relative to other RFS-based algorithms with comparable performance. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9251 1557-9603 |
| DOI: | 10.1109/TAES.2022.3168252 |