Consider Demand Response and Power-Sharing Source-Storage-Load Three-Level Game Models
With the increasing connection between integrated natural gas, thermal energy, and electric power systems, the integrated energy system (IES) needs to coordinate the internal unit scheduling and meet the different load demands of customers. However, when the energy subjects involved in scheduling ar...
Saved in:
| Published in | Sustainability Vol. 17; no. 10; p. 4270 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.05.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2071-1050 2071-1050 |
| DOI | 10.3390/su17104270 |
Cover
| Summary: | With the increasing connection between integrated natural gas, thermal energy, and electric power systems, the integrated energy system (IES) needs to coordinate the internal unit scheduling and meet the different load demands of customers. However, when the energy subjects involved in scheduling are engaged in conflicts of interest, aspects such as hierarchical status relationships and cooperative and competitive relationships must be considered. Therefore, this paper studies the problem of achieving optimal energy scheduling for multiple subjects of source, storage, and load under the same distribution network while ensuring that their benefits are not impaired. First, this paper establishes a dual master-slave game model with a shared energy storage system (SESS), IES, and the alliance of prosumers (APs) as the main subjects. Second, based on the Nash negotiation theory and considering the sharing of electric energy among prosumers, the APs model is equated into two sub-problems of coalition cost minimization and cooperative benefit distribution to ensure that the coalition members distribute the cooperative benefits equitably. Further, the Stackelberg-Stackelberg-Nash three-layer game model is established, and the dichotomous distributed optimization algorithm combined with the alternating direction multiplier method (ADMM) is used to solve this three-layer game model. Finally, in the simulation results of the arithmetic example, the natural gas consumption is reduced by 9.32%, the economic efficiency of IES is improved by 3.95%, and the comprehensive energy purchase cost of APs is reduced by 12.16%, the proposed model verifies the sustainability co-optimization and mutual benefits of source, storage and load multi-interested subjects. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2071-1050 2071-1050 |
| DOI: | 10.3390/su17104270 |