An Industrial Internet Application for Real-Time Fault Diagnosis in Industrial Motors

Being able to detect, identify, and diagnose a fault is a key feature of industrial supervision systems, which enables advance asset management, in particular, predictive maintenance, which greatly increases efficiency and productivity. In this paper, an Industrial Internet app for real-time fault d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 17; no. 1; pp. 284 - 295
Main Authors Langarica, Saul, Ruffelmacher, Christian, Nunez, Felipe
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-5955
1558-3783
DOI10.1109/TASE.2019.2913628

Cover

More Information
Summary:Being able to detect, identify, and diagnose a fault is a key feature of industrial supervision systems, which enables advance asset management, in particular, predictive maintenance, which greatly increases efficiency and productivity. In this paper, an Industrial Internet app for real-time fault detection and diagnosis is implemented and tested in a pilot scale industrial motor. Real-time fault detection and identification is based on dynamic incremental principal component analysis (DIPCA) and reconstruction-based contribution (RBC). When the analysis indicates that one of the vibration measurements is responsible for the fault, a convolutional neural network (CNN) is used to identify the unbalance or bearing fault type. The application was evaluated in its three functionalities: fault detection, fault identification, and fault identification of vibration-related faults, yielding a fault detection rate over 99%, a false alarm rate below 5%, and an identification accuracy over 90%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-5955
1558-3783
DOI:10.1109/TASE.2019.2913628