An Estimation of Distribution Algorithm With Cheap and Expensive Local Search Methods

In an estimation of distribution algorithm (EDA), global population distribution is modeled by a probabilistic model, from which new trial solutions are sampled, whereas individual location information is not directly and fully exploited. In this paper, we suggest to combine an EDA with cheap and ex...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 19; no. 6; pp. 807 - 822
Main Authors Zhou, Aimin, Sun, Jianyong, Zhang, Qingfu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
DOI10.1109/TEVC.2014.2387433

Cover

More Information
Summary:In an estimation of distribution algorithm (EDA), global population distribution is modeled by a probabilistic model, from which new trial solutions are sampled, whereas individual location information is not directly and fully exploited. In this paper, we suggest to combine an EDA with cheap and expensive local search (LS) methods for making use of both global statistical information and individual location information. In our approach, part of a new solution is sampled from a modified univariate histogram probabilistic model and the rest is generated by refining a parent solution through a cheap LS method that does not need any function evaluation. When the population has converged, an expensive LS method is applied to improve a promising solution found so far. Controlled experiments have been carried out to investigate the effects of the algorithm components and the control parameters, the scalability on the number of variables, and the running time. The proposed algorithm has been compared with two state-of-the-art algorithms on two test suites of 27 test instances. Experimental results have shown that, for simple test instances, our algorithm can produce better or similar solutions but with faster convergence speed than the compared methods and for some complicated test instances it can find better solutions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2014.2387433