Gaussian random number generator: Implemented in FPGA for quantum key distribution
Quantum key distribution is the process of using quantum communication to establish a shared key between two parties. It has been demonstrated the unconditional security and effective communication of quantum communication system can be guaranteed by an excellent Gaussian random number (GRN) generat...
Saved in:
| Published in | International journal of numerical modelling Vol. 32; no. 3 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Bognor Regis
Wiley Subscription Services, Inc
01.05.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0894-3370 1099-1204 |
| DOI | 10.1002/jnm.2554 |
Cover
| Summary: | Quantum key distribution is the process of using quantum communication to establish a shared key between two parties. It has been demonstrated the unconditional security and effective communication of quantum communication system can be guaranteed by an excellent Gaussian random number (GRN) generator with high speed and an extended random period. In this paper, we propose to construct the Gaussian random number generator by using field‐programmable gate array (FPGA), which is able to process large data in high speed. We also compare three algorithms of GRN generation: Box‐Muller algorithm, polarization decision algorithm, and central limit algorithm. We demonstrate that the polarization decision algorithm implemented in FPGA requires less computing resources and also produces a high‐quality GRN through the null hypothesis test. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0894-3370 1099-1204 |
| DOI: | 10.1002/jnm.2554 |