Least‐squares mixed Galerkin formulation for variable‐coefficient fractional differential equations with D‐N boundary condition
We propose a least‐squares mixed variational formulation for variable‐coefficient fractional differential equations (FDEs) subject to general Dirichlet‐Neumann boundary condition by splitting the FDE as a system of variable‐coefficient integer‐order equation and constant‐coefficient FDE. The main co...
Saved in:
| Published in | Mathematical methods in the applied sciences Vol. 42; no. 12; pp. 4331 - 4342 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Freiburg
Wiley Subscription Services, Inc
01.08.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0170-4214 1099-1476 |
| DOI | 10.1002/mma.5653 |
Cover
| Summary: | We propose a least‐squares mixed variational formulation for variable‐coefficient fractional differential equations (FDEs) subject to general Dirichlet‐Neumann boundary condition by splitting the FDE as a system of variable‐coefficient integer‐order equation and constant‐coefficient FDE. The main contributions of this article are to establish a new regularity theory of the solution expressed in terms of the smoothness of the right‐hand side only and to develop a decoupled and optimally convergent finite element procedure for the unknown and intermediate variables. Numerical analysis and experiments are conducted to verify these findings. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0170-4214 1099-1476 |
| DOI: | 10.1002/mma.5653 |