Statistical Privacy-Preserving Online Distributed Nash Equilibrium Tracking in Aggregative Games
This article considers an online aggregative game equilibrium problem subject to privacy preservation, where all players aim at tracking the time-varying Nash equilibrium, while some players are corrupted by an adversary. We propose a distributed online Nash equilibrium tracking algorithm, where a c...
Saved in:
| Published in | IEEE transactions on automatic control Vol. 69; no. 1; pp. 323 - 330 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9286 1558-2523 |
| DOI | 10.1109/TAC.2023.3264164 |
Cover
| Summary: | This article considers an online aggregative game equilibrium problem subject to privacy preservation, where all players aim at tracking the time-varying Nash equilibrium, while some players are corrupted by an adversary. We propose a distributed online Nash equilibrium tracking algorithm, where a correlated perturbation mechanism is employed to mask the local information of the players. Our theoretical analysis shows that the proposed algorithm can achieve a sublinear expected regret bound while preserving the privacy of uncorrupted players. We use the Kullback-Leibler divergence to analyze the privacy bound in a statistical sense. Furthermore, we present a tradeoff between the expected regret and the statistical privacy, to obtain a constant privacy bound when the regret bound is sublinear. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2023.3264164 |