Nested varieties of K3 type

Using geometrical correspondences induced by projections and two-steps flag varieties, and a generalization of Orlov's projective bundle theorem, we relate the Hodge structures and derived categories of subvarieties of different Grassmannians. We construct isomorphisms between Calabi-Yau subHod...

Full description

Saved in:
Bibliographic Details
Published inJournal de l'École polytechnique. Mathématiques Vol. 8; pp. 733 - 778
Main Authors Bernardara, Marcello, Fatighenti, Enrico, Manivel, Laurent
Format Journal Article
LanguageEnglish
Published École polytechnique 01.01.2021
Subjects
Online AccessGet full text
ISSN2429-7100
2270-518X
DOI10.5802/jep.156

Cover

More Information
Summary:Using geometrical correspondences induced by projections and two-steps flag varieties, and a generalization of Orlov's projective bundle theorem, we relate the Hodge structures and derived categories of subvarieties of different Grassmannians. We construct isomorphisms between Calabi-Yau subHodge structures of hyperplane sections of Gr(3,n) and those of other varieties arising from symplectic Grassmannian and/or congruences of lines or planes. Similar results hold conjecturally for Calabi-Yau subcategories: we describe in details the Hodge structures and give partial categorical results relating the K3 Fano hyperplane sections of Gr(3,10) to other Fano varieties such as the Peskine variety. Moreover, we show how these correspondences allow to construct crepant categorical resolutions of the Coble cubics. Dans cet article nous étudions et construisons des relations entre les sous-structures de Hodge de type Calabi-Yau sur des variétés de Fano qui sont des sous-variétés de grassmanniennes. En particulier, nous construisons un isomorphisme entre les sous-structures de Hodge de type Calabi-Yau des sections hyperplanes de et celles d’autres variétés provenant de grassmanniennes symplectiques et de congruences de droites ou de plans. Nous détaillons le cas des sections hyperplanes de , qui sont des variétés de Fano de type K3 dont la structure K3 est isomorphe à celle d’autres variétés de Fano comme la variété de Peskine. Ces isomorphismes sont obtenus via des correspondances géométriques entre différentes grassmanniennes, notamment des projections et des sauts via des variétés de drapeaux. Nous montrons aussi que ces correspondances permettent de construire une résolution catégorielle crépante de toute cubique de Coble. De plus, on montre une généralisation de la formule d’Orlov sur les décompositions semi-orthogonales des éclatements, qui permet de donner des versions (conjecturales) des résultats ci-dessus.
ISSN:2429-7100
2270-518X
DOI:10.5802/jep.156