Efficient ADMM-Based Algorithm for Regularized Minimax Approximation

Minimax approximations have found many applications but are lack of efficient solution algorithms for large-scale problems. Based on the alternating direction method of multipliers (ADMM) for convex optimization, this letter presents an efficient scalarwise algorithm for a regularized minimax approx...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 30; pp. 210 - 214
Main Authors Shentu, Xuanyue, Lai, Xiaoping, Wang, Tianlei, Cao, Jiuwen
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/LSP.2023.3253053

Cover

Abstract Minimax approximations have found many applications but are lack of efficient solution algorithms for large-scale problems. Based on the alternating direction method of multipliers (ADMM) for convex optimization, this letter presents an efficient scalarwise algorithm for a regularized minimax approximation problem. The ADMM-based algorithm is then applied in the minimax design of two-dimensional (2-D) digital filters and the training of randomized neural networks for regression on a realworld benchmark dataset. Experimental results demonstrate the fast convergence rate and low computational complexity of the proposed algorithm, as well as the good approximation/prediction performance of the learned approximation model.
AbstractList Minimax approximations have found many applications but are lack of efficient solution algorithms for large-scale problems. Based on the alternating direction method of multipliers (ADMM) for convex optimization, this letter presents an efficient scalarwise algorithm for a regularized minimax approximation problem. The ADMM-based algorithm is then applied in the minimax design of two-dimensional (2-D) digital filters and the training of randomized neural networks for regression on a realworld benchmark dataset. Experimental results demonstrate the fast convergence rate and low computational complexity of the proposed algorithm, as well as the good approximation/prediction performance of the learned approximation model.
Author Shentu, Xuanyue
Wang, Tianlei
Cao, Jiuwen
Lai, Xiaoping
Author_xml – sequence: 1
  givenname: Xuanyue
  orcidid: 0009-0006-6787-6885
  surname: Shentu
  fullname: Shentu, Xuanyue
  email: 211060030@hdu.edu.cn
  organization: Institute of Artificial Intelligence and the Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Xiaoping
  orcidid: 0000-0002-5878-5563
  surname: Lai
  fullname: Lai, Xiaoping
  email: laixp@hdu.edu.cn
  organization: Institute of Artificial Intelligence and the Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
– sequence: 3
  givenname: Tianlei
  orcidid: 0000-0002-4498-4326
  surname: Wang
  fullname: Wang, Tianlei
  email: tianlei.wang.cn@gmail.com
  organization: Institute of Artificial Intelligence and the Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
– sequence: 4
  givenname: Jiuwen
  orcidid: 0000-0002-6480-5794
  surname: Cao
  fullname: Cao, Jiuwen
  email: jwcao@hdu.edu.cn
  organization: Institute of Artificial Intelligence and the Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
BookMark eNp9kMtPAjEQxhuDiYDePXjYxPPi9LntcQV8JBCNj3OzlBZLll3sLgn411uEg_Hgab5k5jffzNdDnaquLEKXGAYYg7qZvD4PCBA6oIRT4PQEdTHnMiVU4E7UkEGqFMgz1GuaJQBILHkXjcbOeeNt1Sb5aDpNb4vGzpO8XNTBtx-rxNUhebGLTVkE_xU7U1_5VbFN8vU61NsoW19X5-jUFWVjL461j97vxm_Dh3TydP84zCepIYq0KeMzkxXWqRkVjhgmpBIwJ4UlFGNmJeYuy0CpGaYCmGBOUkalyIxgwmAraB9dH_ZG78-NbVq9rDehipaaZFIoyYTYT8FhyoS6aYJ1eh3ioWGnMeh9VjpmpfdZ6WNWERF_EOPbn9faUPjyP_DqAHpr7S8f4FJlQL8BKnp2cA
CODEN ISPLEM
CitedBy_id crossref_primary_10_3390_s24134327
Cites_doi 10.1109/72.536316
10.1016/j.csda.2014.02.018
10.1109/82.558459
10.1109/29.21687
10.1016/j.neucom.2005.12.126
10.1109/LSP.2019.2926020
10.1109/TSP.2009.2021639
10.1109/CVPR.2006.253
10.1109/TSP.2018.2841887
10.1109/TCSI.2019.2934140
10.1109/TCSII.2021.3065977
10.1023/A:1009628031942
10.1016/j.ejor.2007.04.020
10.1109/tdsc.2021.3105111
10.1109/tnnls.2021.3104840
10.1109/2.144401
10.1016/j.dsp.2014.05.006
10.1109/TNN.2008.2005596
10.1109/TCSII.2022.3160400
10.1109/LSP.2004.833585
10.1109/TCSII.2007.903216
10.1007/s11045-017-0543-3
10.1561/2200000016
10.1109/ICPR.1992.201708
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2023.3253053
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 214
ExternalDocumentID 10_1109_LSP_2023_3253053
10058970
Genre orig-research
GrantInformation_xml – fundername: Nature Science Foundation of Zhejiang Province
  grantid: LZ22F030002
– fundername: National Key Research Program of China
  grantid: 2021YFE0100100
– fundername: National Natural Science Foundation of China; National Nature Science Foundation of China
  grantid: U1909209
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-45bc7aef9b36f2c468960d2ae23114e815f77099b1360464f8343867c646c1e63
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Sun Jun 29 16:22:10 EDT 2025
Wed Oct 01 03:03:33 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Wed Aug 27 02:49:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-45bc7aef9b36f2c468960d2ae23114e815f77099b1360464f8343867c646c1e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5878-5563
0000-0002-4498-4326
0009-0006-6787-6885
0000-0002-6480-5794
PQID 2786984666
PQPubID 75747
PageCount 5
ParticipantIDs crossref_primary_10_1109_LSP_2023_3253053
proquest_journals_2786984666
ieee_primary_10058970
crossref_citationtrail_10_1109_LSP_2023_3253053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
ref10
ref1
ref17
ref16
ref24
ref23
Mitra (ref2) 2001
ref26
ref25
ref20
ref22
ref21
ref27
ref8
Lawson (ref19) 1961
ref7
ref9
ref4
ref3
ref6
ref5
Boyd (ref18) 2009
Castillo (ref12) 2000; 11
References_xml – ident: ref26
  doi: 10.1109/72.536316
– ident: ref15
  doi: 10.1016/j.csda.2014.02.018
– ident: ref1
  doi: 10.1109/82.558459
– ident: ref17
  doi: 10.1109/29.21687
– ident: ref27
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref8
  doi: 10.1109/LSP.2019.2926020
– ident: ref22
  doi: 10.1109/TSP.2009.2021639
– ident: ref13
  doi: 10.1109/CVPR.2006.253
– ident: ref6
  doi: 10.1109/TSP.2018.2841887
– ident: ref9
  doi: 10.1109/TCSI.2019.2934140
– ident: ref10
  doi: 10.1109/TCSII.2021.3065977
– volume: 11
  start-page: 39
  issue: 1
  year: 2000
  ident: ref12
  article-title: A minimax method for learning functional networks
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1009628031942
– ident: ref14
  doi: 10.1016/j.ejor.2007.04.020
– volume-title: Convex Optimization
  year: 2009
  ident: ref18
– volume-title: Digital Signal Processing: A Computer-Based Approach
  year: 2001
  ident: ref2
– ident: ref16
  doi: 10.1109/tdsc.2021.3105111
– ident: ref23
  doi: 10.1109/tnnls.2021.3104840
– ident: ref25
  doi: 10.1109/2.144401
– ident: ref5
  doi: 10.1016/j.dsp.2014.05.006
– ident: ref21
  doi: 10.1109/TNN.2008.2005596
– ident: ref11
  doi: 10.1109/TCSII.2022.3160400
– ident: ref3
  doi: 10.1109/LSP.2004.833585
– ident: ref4
  doi: 10.1109/TCSII.2007.903216
– year: 1961
  ident: ref19
  article-title: Contributions to the theory of linear least maximum approximations
– ident: ref7
  doi: 10.1007/s11045-017-0543-3
– ident: ref20
  doi: 10.1561/2200000016
– ident: ref24
  doi: 10.1109/ICPR.1992.201708
SSID ssj0008185
Score 2.3849325
Snippet Minimax approximations have found many applications but are lack of efficient solution algorithms for large-scale problems. Based on the alternating direction...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 210
SubjectTerms ADMM
Algorithms
Approximation
Approximation algorithms
Computational geometry
Convex functions
Convexity
digital filter design
Digital filters
Finite impulse response filters
Machine learning
Machine learning algorithms
Mathematical analysis
Minimax approximation
Minimax technique
Neural networks
Optimization
Programming
Signal processing algorithms
Title Efficient ADMM-Based Algorithm for Regularized Minimax Approximation
URI https://ieeexplore.ieee.org/document/10058970
https://www.proquest.com/docview/2786984666
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6J33wc-J0Sh988SFd27RJ-zidIuJE1MHeSpNctTg3mR3I_novaSd-oPhWaC6E3CX3S3L3O0KO0GPLTMYJBRYxGuYJUBn5OQWtEdwqGXFpEoX71_xiEF4Oo2GdrG5zYQDABp-Baz7tW76eqJm5KsMVborgCTyhL4uYV8laH9uu8TxVgKFHcYuNF2-SXtK5urtxTZlwlwUR2jf74oNsUZUfO7F1L-fr5HoxsCqq5MmdldJV82-cjf8e-QZZq4Gm060sY5MswXiLrH6iH9wmvTPLH4GSTrfX79MT9Gja6Y4eJtOifHx2EM86t7ZW_bSY459-MS6eszena3jI34oq6bFJBudn96cXtK6qQFWQBCUNI6lEBnkiGc8DFfIYDzE6yACRnh9C7Ee5EIgbpc-4effMYxaymAvFQ6584GyHNMaTMewSR3mJznxPZxJRgtAq0xGAxwMQSsTKz1uks5jnVNWU46byxSi1Rw8vSVEzqdFMWmumRY4_JF4quo0_2jbNRH9qV81xi7QXukzrBfmaBmgwCWItzvd-EdsnK6b36nqlTRrldAYHCDhKeWgN7R3sHdAZ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYqOLQ98GipWJ459NKDQxK_kuPy0tJuVlUBiVsU2xOIgF20ZCXEr2fsZBEFUfUWKbZszdgz33hehHxHja1LnWYUmGCUVxlQLeKKgrUIbo0WUrtE4XwkB-f854W46JLVfS4MAPjgMwjdp_fl24mZuacyvOGuCZ5CC31RcM5Fm671LHid7mlDDCOKQjadeyWjbG94-jt0jcJDlgg84ewvLeTbqryRxV7BHC-T0XxrbVzJdThrdGgeX1Vt_O-9r5ClDmoG_fZsrJIPMP5CPr8oQPiVHB75ChI4M-gf5jndR51mg_7N5WRaN1e3ASLa4I_vVj-tH_FPXo_r2_Ih6LtK5A91m_a4Rs6Pj84OBrTrq0BNkiUN5UIbVUKVaSarxHCZohljkxIQ68Uc0lhUSiFy1DGTzvNZpYyzVCojuTQxSPaNLIwnY1gngYkyW8aRLTXiBGVNaQVAJBNQRqUmrnpkb07nwnRFx13vi5vCGx9RViBnCseZouNMj_x4nnHXFtz4x9g1R-gX41oa98jWnJdFdyXvi0SlMkO0JeXGO9N2ycfBWT4shiejX5vkk1upfWzZIgvNdAbbCD8aveMP3RMAGdNm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+ADMM-Based+Algorithm+for+Regularized+Minimax+Approximation&rft.jtitle=IEEE+signal+processing+letters&rft.au=Shentu%2C+Xuanyue&rft.au=Lai%2C+Xiaoping&rft.au=Wang%2C+Tianlei&rft.au=Cao%2C+Jiuwen&rft.date=2023&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=30&rft.spage=210&rft.epage=214&rft_id=info:doi/10.1109%2FLSP.2023.3253053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2023_3253053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon