Efficient ADMM-Based Algorithm for Regularized Minimax Approximation
Minimax approximations have found many applications but are lack of efficient solution algorithms for large-scale problems. Based on the alternating direction method of multipliers (ADMM) for convex optimization, this letter presents an efficient scalarwise algorithm for a regularized minimax approx...
Saved in:
| Published in | IEEE signal processing letters Vol. 30; pp. 210 - 214 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1070-9908 1558-2361 |
| DOI | 10.1109/LSP.2023.3253053 |
Cover
| Summary: | Minimax approximations have found many applications but are lack of efficient solution algorithms for large-scale problems. Based on the alternating direction method of multipliers (ADMM) for convex optimization, this letter presents an efficient scalarwise algorithm for a regularized minimax approximation problem. The ADMM-based algorithm is then applied in the minimax design of two-dimensional (2-D) digital filters and the training of randomized neural networks for regression on a realworld benchmark dataset. Experimental results demonstrate the fast convergence rate and low computational complexity of the proposed algorithm, as well as the good approximation/prediction performance of the learned approximation model. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1070-9908 1558-2361 |
| DOI: | 10.1109/LSP.2023.3253053 |