Pliable Index Coding via Conflict-Free Colorings of Hypergraphs

We present a hypergraph coloring based approach to pliable index coding (PICOD). We represent the given PICOD problem using a hypergraph consisting of <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> messages as vertices and the request-set...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 70; no. 6; pp. 3903 - 3921
Main Authors Krishnan, Prasad, Mathew, Rogers, Kalyanasundaram, Subrahmanyam
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2024.3355416

Cover

More Information
Summary:We present a hypergraph coloring based approach to pliable index coding (PICOD). We represent the given PICOD problem using a hypergraph consisting of <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> messages as vertices and the request-sets of the <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> clients as hyperedges. A conflict-free coloring of a hypergraph is an assignment of colors to its vertices so that each hyperedge contains a uniquely colored vertex. We show that various parameters arising out of conflict-free colorings (and some new variants) of the PICOD hypergraph result in new upper bounds for the optimal PICOD length. Using these new upper bounds, we show the existence of single-request PICOD schemes with length <inline-formula> <tex-math notation="LaTeX">O(\log ^{2}\Gamma) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\Gamma </tex-math></inline-formula> is the maximum number of hyperedges overlapping with any hyperedge. For the <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-request PICOD scenario, we show the existence of PICOD schemes of length <inline-formula> <tex-math notation="LaTeX">\max (O(\log \Gamma \log m), O(t \log m)) </tex-math></inline-formula>, under some mild conditions on the graph parameters. These results improve upon earlier work in general. We also show that our achievable lengths in the <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-request case are asymptotically optimal, up to a multiplicative factor of <inline-formula> <tex-math notation="LaTeX">\log t </tex-math></inline-formula>. Our existence results are accompanied by randomized constructive algorithms, which have complexity polynomial in the parameters of the PICOD problem, in expectation or with high probability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2024.3355416