Deep Learning for Hybrid 5G Services in Mobile Edge Computing Systems: Learn From a Digital Twin

In this paper, we consider a mobile edge computing system with both ultra-reliable and low-latency communications services and delay tolerant services. We aim to minimize the normalized energy consumption, defined as the energy consumption per bit, by optimizing user association, resource allocation...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 18; no. 10; pp. 4692 - 4707
Main Authors Dong, Rui, She, Changyang, Hardjawana, Wibowo, Li, Yonghui, Vucetic, Branka
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1276
1558-2248
DOI10.1109/TWC.2019.2927312

Cover

More Information
Summary:In this paper, we consider a mobile edge computing system with both ultra-reliable and low-latency communications services and delay tolerant services. We aim to minimize the normalized energy consumption, defined as the energy consumption per bit, by optimizing user association, resource allocation, and offloading probabilities subject to the quality-of-service requirements. The user association is managed by the mobility management entity (MME), while resource allocation and offloading probabilities are determined by each access point (AP). We propose a deep learning (DL) architecture, where a digital twin of the real network environment is used to train the DL algorithm off-line at a central server. From the pre-trained deep neural network (DNN), the MME can obtain user association scheme in a real-time manner. Considering that the real networks are not static, the digital twin monitors the variation of real networks and updates the DNN accordingly. For a given user association scheme, we propose an optimization algorithm to find the optimal resource allocation and offloading probabilities at each AP. The simulation results show that our method can achieve lower normalized energy consumption with less computation complexity compared with an existing method and approach to the performance of the global optimal solution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2019.2927312