Antenna Decoupling by Common and Differential Modes Cancellation

In this article, a general decoupling method based on a new perspective of common mode (CM) and differential mode (DM) cancellation is proposed. For two closely spaced antennas, the mutual coupling effect can be analyzed and solved by exciting them simultaneously with in-phase (CM) and out-of-phase...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 69; no. 2; pp. 672 - 682
Main Authors Sun, Libin, Li, Yue, Zhang, Zhijun, Wang, Hanyang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-926X
1558-2221
DOI10.1109/TAP.2020.3009427

Cover

More Information
Summary:In this article, a general decoupling method based on a new perspective of common mode (CM) and differential mode (DM) cancellation is proposed. For two closely spaced antennas, the mutual coupling effect can be analyzed and solved by exciting them simultaneously with in-phase (CM) and out-of-phase (DM) signals. It is theoretically proved that, if CM and DM impedances are the same, the mutual coupling effect between two separated antennas can be totally eliminated. Therefore, we can solve the coupling problem by CM and DM impedance analysis and exploit the unique field properties of characteristic modes to assist in antenna decoupling in a physical intuitive way. To validate the feasibility of this method, two practical design examples, including the decoupling between closely spaced dipole antennas and planar inverted-F antennas, are proposed. Both design examples have demonstrated that the proposed method can provide a systemic design guideline for antenna decoupling and achieve better decoupling performance compared to the conventional decoupling techniques. We forecast the proposed decoupling scheme, with a simplified decoupling procedure, has great potential for the applications of antenna arrays and multi-input multi-output (MIMO) systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2020.3009427